He Yi, Pavanello Chiara, Hutchins Patrick M, Tang Chongren, Pourmousa Mohsen, Vaisar Tomas, Song Hyun D, Pastor Richard W, Remaley Alan T, Goldberg Ira J, Costacou Tina, Davidson W Sean, Bornfeldt Karin E, Calabresi Laura, Segrest Jere P, Heinecke Jay W
Department of Medicine, University of Washington, Seattle, WA, 98109, USA.
Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
medRxiv. 2023 Nov 4:2023.11.03.23297986. doi: 10.1101/2023.11.03.23297986.
Cholesterol efflux capacity (CEC) predicts cardiovascular disease (CVD) independently of HDL cholesterol (HDL-C) levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 pathway, but the underlying mechanisms are unclear.
We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 in the different particles, and the CECs of plasma and isolated HDLs.
We quantified macrophage and ABCA1 CEC of four distinct sizes of reconstituted HDL (r-HDL). CEC increased as particle size decreased. MS/MS analysis of chemically crosslinked peptides and molecular dynamics simulations of APOA1 (HDL's major protein) indicated that the mobility of that protein's C-terminus was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs-like r-HDLs-are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3-5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC.
We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the two antiparallel molecules of APOA1 are flipped off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased CVD risk. Thus, extra-small and small HDLs may be key mediators and indicators of HDL's cardioprotective effects.
胆固醇流出能力(CEC)可独立于高密度脂蛋白胆固醇(HDL-C)水平预测心血管疾病(CVD)。孤立的小HDL颗粒是通过ABCA1途径促进巨噬细胞CEC的有效物质,但潜在机制尚不清楚。
我们使用来自对照和卵磷脂胆固醇酰基转移酶(LCAT)缺陷受试者的重组HDL和血浆的模型系统研究,来探究HDL颗粒大小、不同颗粒中APOA1结构以及血浆和分离的HDL的CEC之间的关系。
我们对四种不同大小的重组HDL(r-HDL)的巨噬细胞和ABCA1 CEC进行了量化。CEC随着颗粒大小的减小而增加。对化学交联肽的MS/MS分析以及APOA1(HDL的主要蛋白质)的分子动力学模拟表明,该蛋白质C末端的流动性在最小颗粒中明显更高且从表面翻转。为了探究模型系统研究的生理相关性,我们从LCAT缺陷受试者中分离HDL,其小HDL样r-HDL呈盘状,由APOA1、胆固醇和磷脂组成。尽管这些受试者的HDL颗粒血浆水平非常低,但他们的CEC正常。在LCAT缺陷受试者和对照受试者中,分离的超小HDL(通过校准离子淌度分析得到的超小和小HDL的混合物)的CEC比分离的较大尺寸HDL的CEC大3至5倍。用人类LCAT孵育LCAT缺陷血浆和对照血浆可将超小和小HDL颗粒转化为较大颗粒,并显著抑制CEC。
我们提出了小HDL的CEC增强的机制。在较小颗粒中,APOA1的两个反平行分子的C末端从HDL的脂质表面翻转。这种延伸构象使它们能够与ABCA1结合。相比之下,较大HDL的C末端无法与ABCA1有效相互作用,因为它们形成了紧密附着在颗粒脂质上的螺旋束。如较小颗粒所见的CEC增强预示着CVD风险降低。因此,超小和小HDL可能是HDL心脏保护作用的关键介质和指标。