Saraceno Piermarco, Sláma Vladislav, Cupellini Lorenzo
Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
J Chem Phys. 2023 Nov 14;159(18). doi: 10.1063/5.0170295.
The dynamics of delocalized excitons in light-harvesting complexes (LHCs) can be investigated using different experimental techniques, and transient absorption (TA) spectroscopy is one of the most valuable methods for this purpose. A careful interpretation of TA spectra is essential for the clarification of excitation energy transfer (EET) processes occurring during light-harvesting. However, even in the simplest LHCs, a physical model is needed to interpret transient spectra as the number of EET processes occurring at the same time is very large to be disentangled from measurements alone. Physical EET models are commonly built by fittings of the microscopic exciton Hamiltonians and exciton-vibrational parameters, an approach that can lead to biases. Here, we present a first-principles strategy to simulate EET and transient absorption spectra in LHCs, combining molecular dynamics and accurate multiscale quantum chemical calculations to obtain an independent estimate of the excitonic structure of the complex. The microscopic parameters thus obtained are then used in EET simulations to obtain the population dynamics and the related spectroscopic signature. We apply this approach to the CP29 minor antenna complex of plants for which we follow the EET dynamics and transient spectra after excitation in the chlorophyll b region. Our calculations reproduce all the main features observed in the transient absorption spectra and provide independent insight on the excited-state dynamics of CP29. The approach presented here lays the groundwork for the accurate simulation of EET and unbiased interpretation of transient spectra in multichromophoric systems.
利用不同的实验技术可以研究光捕获复合物(LHCs)中离域激子的动力学,而瞬态吸收(TA)光谱法是实现这一目的最有价值的方法之一。对TA光谱进行仔细解读对于阐明光捕获过程中发生的激发能量转移(EET)过程至关重要。然而,即使在最简单的LHCs中,也需要一个物理模型来解释瞬态光谱,因为同时发生的EET过程数量非常多,仅靠测量无法区分。物理EET模型通常通过对微观激子哈密顿量和激子 - 振动参数进行拟合来构建,这种方法可能会导致偏差。在此,我们提出一种第一性原理策略来模拟LHCs中的EET和瞬态吸收光谱,结合分子动力学和精确的多尺度量子化学计算,以获得复合物激子结构的独立估计。然后将由此获得的微观参数用于EET模拟,以获得粒子数动力学和相关的光谱特征。我们将这种方法应用于植物的CP29小天线复合物,跟踪叶绿素b区域激发后的EET动力学和瞬态光谱。我们的计算重现了瞬态吸收光谱中观察到的所有主要特征,并为CP29的激发态动力学提供了独立的见解。本文提出的方法为多发色团系统中EET的精确模拟和瞬态光谱的无偏解释奠定了基础。