Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
J Phys Chem B. 2013 Jun 6;117(22):6585-92. doi: 10.1021/jp4004328. Epub 2013 May 21.
Recent structural data revealed that the CP29 protein of higher plant photosystem II (PSII) contains 13 chlorophylls (Chl's) per complex (Pan et al. Nat. Struct. Mol. Biol. 2011, 18, 309), i.e., five Chl's more than in the predicted CP29 homology-based structure model (Bassi et al. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10056). This lack of consensus presents a constraint on the interpretation of CP29 optical spectra and their underlying electronic structure. To address this problem, we present new low-temperature (5 K) absorption, fluorescence, and hole-burned (HB) spectra for CP29 proteins from spinach, which are compared with the previously reported data. We focus on excitation energy transfer (EET) and the nature of the lowest-energy state(s). We argue that CP29 proteins previously studied by HB spectroscopy lacked at least one Chl a molecule (i.e., a615 or a611), which along with Chl a612 contribute to the lowest energy state in more intact CP29, and one Chl b (most likely b607). This is why the low-energy state and fluorescence maxima reported by Pieper et al. (Photochem. Photobiol.2000, 71, 574) were blue-shifted by ~1 nm, the low-energy state appeared to be highly localized on a single Chl a molecule, and the position of the low-energy state was independent of burning fluence. In contrast, the position of the nonresonant HB spectrum shifts blue with increasing fluence in intact CP29, as this state is strongly contributed to by several pigments (i.e., a611, a612, a615, and a610). Zero-phonon hole widths obtained for the Chl b band at 638.5 nm (5 K) revealed two independent Chl b → Chl a EET times, i.e., 4 ± 0.5 and 0.4 ± 0.1 ps. The latter value is a factor of 2 faster than previously observed by HB spectroscopy and very similar to the one observed by Gradinaru et al. (J. Phys. Chem. B 2000, 104, 9330) in pump-probe experiments. EET time from 650 nm Chl b → Chl a and downward EET from Chl(s) a state(s) at 665 nm occurs in 4.9 ± 0.7 ps. These findings provide important constraints for excitonic calculations that are discussed in the accompanying paper (part II, DOI 10.1021/jp4004278 ).
最近的结构数据表明,高等植物光系统 II(PSII)的 CP29 蛋白每个复合物含有 13 个叶绿素(Chl's)(Pan 等人,Nat. Struct. Mol. Biol. 2011, 18, 309),即比预测的 CP29 同源结构模型(Bassi 等人,Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10056)多五个 Chl's。这种缺乏共识对 CP29 光学光谱及其潜在电子结构的解释构成了限制。为了解决这个问题,我们呈现了来自菠菜的 CP29 蛋白的新的低温(5 K)吸收、荧光和孔烧蚀(HB)光谱,并与之前报道的数据进行了比较。我们专注于激发能量转移(EET)和最低能量状态的性质。我们认为,之前通过 HB 光谱学研究的 CP29 蛋白至少缺少一个叶绿素 a 分子(即 a615 或 a611),它与叶绿素 a612 一起为更完整的 CP29 中的最低能量状态做出贡献,并且缺少一个叶绿素 b(很可能是 b607)。这就是为什么 Pieper 等人报告的低能量状态和荧光最大值(Photochem. Photobiol.2000, 71, 574)被蓝移了约 1nm,低能量状态似乎高度局域在单个叶绿素 a 分子上,并且低能量状态的位置与燃烧强度无关。相比之下,在完整的 CP29 中,随着强度的增加,非共振 HB 光谱的位置向蓝移,因为这个状态强烈地由几个色素贡献(即 a611、a612、a615 和 a610)。在 638.5nm(5K)处获得的叶绿素 b 带的零声子孔宽度揭示了两个独立的叶绿素 b→叶绿素 a EET 时间,即 4±0.5 和 0.4±0.1 ps。后一个值比以前通过 HB 光谱学观察到的快了 2 倍,与 Gradinaru 等人(J. Phys. Chem. B 2000, 104, 9330)在泵浦探测实验中观察到的值非常相似。来自 650nm 叶绿素 b→叶绿素 a 的 EET 和来自 665nm Chl(s)a 态的向下 EET 在 4.9±0.7ps 内发生。这些发现为讨论中的激子计算提供了重要的约束条件(参见伴随的论文(第二部分,DOI 10.1021/jp4004278))。