MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China.
Theor Appl Genet. 2023 Nov 14;136(12):245. doi: 10.1007/s00122-023-04496-7.
A total of 101 QTNs were found to be associated with soybean flowering time responses to photo-thermal conditions; three candidate genes with non-synonymous substitutions were identified: Glyma.08G302500 (GmHY5), Glyma.08G303900 (GmPIF4c), and Glyma.16G046700 (GmVRN1). The flowering transition is a crucial component of soybean (Glycine max L. Merr.) development. The transition process is regulated by photoperiod, temperature, and their interaction. To examine the genetic architecture associated with temperature- and photo-thermal-mediated regulation of soybean flowering, we here performed a genome-wide association study using a panel of 201 soybean cultivars with maturity groups ranging from MG 000 to VIII. Each cultivar was grown in artificially controlled photoperiod and different seasons in 2017 and 2018 to assess the thermal response (TR) and the interactive photo-thermal response (IPT) of soybean flowering time. The panel contained 96,299 SNPs with minor allele frequencies > 5%; 33, 19, and 49 of these SNPs were significantly associated with only TR, only IPT, and both TR and IPT, respectively. Twenty-one SNPs were located in or near previously reported quantitative trait loci for first-flowering; 16 SNPs were located within 200 kb of the main-effect flowering genes GmFT2a, GmFT2b, GmFT3a, GmFT3b, GmFT5a, GmFT5b, GmCOL2b, GmPIF4b, and GmPIF4c, or near homologs of the known Arabidopsis thaliana flowering genes BBX19, VRN1, TFL1, FUL, AGL19, SPA1, HY5, PFT1, and EDF1. Natural non-synonymous allelic variations were identified in the candidate genes Glyma.08G302500 (GmHY5), Glyma.08G303900 (GmPIF4c), and Glyma.16G046700 (GmVRN1). Cultivars with different haplotypes showed significant variations in TR, IPT, and flowering time in multiple environments. The favorable alleles, candidate genes, and diagnostic SNP markers identified here provide valuable information for future improvement of soybean photo-thermal adaptability, enabling expansion of soybean production regions and improving plant resilience to global climate change.
共发现 101 个与大豆开花时间对光热条件响应相关的数量性状座位(QTNs);鉴定出 3 个具有非同义取代的候选基因:Glyma.08G302500(GmHY5)、Glyma.08G303900(GmPIF4c)和 Glyma.16G046700(GmVRN1)。开花转变是大豆(Glycine max L. Merr.)发育的关键组成部分。该转变过程受光周期、温度及其相互作用的调节。为了研究与大豆开花的温度和光热调节相关的遗传结构,我们在这里使用 201 个大豆品种的小组进行了全基因组关联研究,这些品种的成熟组从 MG 000 到 VIII 不等。每个品种在 2017 年和 2018 年的人工控制光周期和不同季节中生长,以评估大豆开花时间的热响应(TR)和交互光热响应(IPT)。该小组包含 96299 个具有次要等位基因频率(MAF)>5%的 SNP;其中 33、19 和 49 个 SNP 分别仅与 TR、IPT 和 TR 和 IPT 显著相关。21 个 SNP 位于先前报道的第一个开花数量性状基因座的位置或附近;16 个 SNP 位于主效开花基因 GmFT2a、GmFT2b、GmFT3a、GmFT3b、GmFT5a、GmFT5b、GmCOL2b、GmPIF4b 和 GmPIF4c 或已知拟南芥开花基因 BBX19、VRN1、TFL1、FUL、AGL19、SPA1、HY5、PFT1 和 EDF1 的近邻附近。在候选基因 Glyma.08G302500(GmHY5)、Glyma.08G303900(GmPIF4c)和 Glyma.16G046700(GmVRN1)中鉴定出自然非同义等位基因变异。具有不同单倍型的品种在多个环境中表现出 TR、IPT 和开花时间的显著变化。这里鉴定出的有利等位基因、候选基因和诊断 SNP 标记为未来提高大豆对光热的适应性提供了有价值的信息,使大豆生产区域的扩展和提高植物对全球气候变化的适应能力成为可能。