Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
BMC Plant Biol. 2013 Jun 25;13:91. doi: 10.1186/1471-2229-13-91.
Absence of or low sensitivity to photoperiod is necessary for short-day crops, such as rice and soybean, to adapt to high latitudes. Photoperiod insensitivity in soybeans is controlled by two genetic systems and involves three important maturity genes: E1, a repressor for two soybean orthologs of Arabidopsis FLOWERING LOCUS T (GmFT2a and GmFT5a), and E3 and E4, which are phytochrome A genes. To elucidate the diverse mechanisms underlying photoperiod insensitivity in soybean, we assessed the genotypes of four maturity genes (E1 through E4) in early-flowering photoperiod-insensitive cultivars and their association with post-flowering responses.
We found two novel dysfunctional alleles in accessions originally considered to have a dominant E3 allele according to known DNA markers. The E3 locus, together with E1 and E4, contained multiple dysfunctional alleles. We identified 15 multi-locus genotypes, which we subdivided into 6 genotypic groups by classifying their alleles by function. Of these, the e1-as/e3/E4 genotypic group required an additional novel gene (different from E1, E3, and E4) to condition photoperiod insensitivity. Despite their common pre-flowering photoperiod insensitivity, accessions with different multi-locus genotypes responded differently to the post-flowering photoperiod. Cultivars carrying E3 or E4 were sensitive to photoperiod for post-flowering characteristics, such as reproductive period and stem growth after flowering. The phytochrome A-regulated expression of the determinate growth habit gene Dt1, an ortholog of Arabidopsis TERMINAL FLOWER1, was involved in the persistence of the vegetative activity at the stem apical meristem of flower-induced plants under long-day conditions.
Diverse genetic mechanisms underlie photoperiod insensitivity in soybean. At least three multi-locus genotypes consisting of various allelic combinations at E1, E3, and E4 conferred pre-flowering photoperiod insensitivity to soybean cultivars but led to different responses to photoperiod during post-flowering vegetative and reproductive development. The phyA genes E3 and E4 are major controllers underlying not only pre-flowering but also post-flowering photoperiod responses. The current findings improve our understanding of genetic diversity in pre-flowering photoperiod insensitivity and mechanisms of post-flowering photoperiod responses in soybean.
短日作物(如水稻和大豆)适应高纬度地区需要对光周期不敏感或低敏感。大豆的光周期不敏感由两个遗传系统控制,涉及三个重要的成熟基因:E1,两个拟南芥开花时间基因(GmFT2a 和 GmFT5a)的大豆同源物的抑制剂,以及 E3 和 E4,它们是光敏色素 A 基因。为了阐明大豆光周期不敏感的不同机制,我们评估了早期开花光周期不敏感品种中四个成熟基因(E1 至 E4)的基因型及其与开花后反应的关联。
我们发现,根据已知的 DNA 标记,最初被认为具有显性 E3 等位基因的品种中存在两个新的功能失调等位基因。E3 基因座与 E1 和 E4 一起包含多个功能失调的等位基因。我们鉴定了 15 种多基因座基因型,通过对其功能分类的等位基因将其分为 6 种基因型组。其中,e1-as/e3/E4 基因型组需要一个额外的新基因(与 E1、E3 和 E4 不同)来调节光周期不敏感。尽管它们具有共同的开花前光周期不敏感,但具有不同多基因座基因型的品种对开花后光周期的反应不同。携带 E3 或 E4 的品种对开花后特征(如生殖期和开花后茎的生长)的光周期敏感。拟南芥 TERMINAL FLOWER1 的同源物决定生长习性基因 Dt1 的光形态建成 A 调控表达参与了长日条件下诱导开花植物茎顶端分生组织中营养生长活性的持续。
大豆光周期不敏感的遗传机制多种多样。至少三种由 E1、E3 和 E4 各种等位基因组合组成的多基因座基因型赋予大豆品种开花前光周期不敏感,但导致开花后营养和生殖发育过程中对光周期的不同反应。phyA 基因 E3 和 E4 不仅是开花前,而且是开花后光周期反应的主要控制器。目前的研究结果提高了我们对大豆开花前光周期不敏感遗传多样性和开花后光周期反应机制的理解。