Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Adv Neurobiol. 2023;34:367-496. doi: 10.1007/978-3-031-36159-3_9.
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
人类神经元的树突棘特征遵循本书前几章中呈现的最新知识。人类树突以其分支模式和空间分布的异质性而著称。这些数据与电路和专门功能有关。树突棘增强神经元的连接性,调节和整合突触输入,并为微电路和大规模网络提供额外的可塑性功能。树突棘呈现出形状和大小的连续体,其数量和在树突长度上的分布在神经元和不同区域中是多种多样的。事实上,人类神经元从无棘或“相对无棘”细胞到覆盖着高密度混杂棘突的非常长的树突的神经元都有。在这一章中,我们讨论了人类棘突的系统发生和个体发生发育,并描述了脊髓、脑干、小脑、丘脑、基底神经节、杏仁核、海马区和新皮层区的人类棘突神经元的异质特征。通过超微结构研究,综述了高尔基浸渍树突棘的三维重建和荧光显微镜数据,以解决人类中复杂的突触处理和整合可能性。还介绍了病理性变化,例如阿尔茨海默病和精神分裂症。基本形态数据可以与当前技术联系起来,该研究领域的前景包括具有特定转录组特征的人类神经元棘突的特征描述、细胞多样性的分子分类以及共存细胞亚群的电生理鉴定。这些数据将阐明细胞属性如何决定神经元类型特异性连接和大脑布线,从而影响我们的各种能力和行为。