Suppr超能文献

应用超声技术于离体猪心模型测量冠状动脉血流速度和壁面切应力

Dynamic Coronary Blood Flow Velocity and Wall Shear Stress Estimation Using Ultrasound in an Ex Vivo Porcine Heart.

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA.

Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA.

出版信息

Cardiovasc Eng Technol. 2024 Feb;15(1):65-76. doi: 10.1007/s13239-023-00697-9. Epub 2023 Nov 14.

Abstract

PURPOSE

Wall shear stress (WSS) is a critically important physical factor contributing to atherosclerosis. Mapping the spatial distribution of local, oscillatory WSS can identify important mechanisms underlying the progression of coronary artery disease.

METHODS

In this study, blood flow velocity and time-varying WSS were estimated in the left anterior descending (LAD) coronary artery of an ex vivo beating porcine heart using ultrasound with an 18 MHz linear array transducer aligned with the LAD in a forward-viewing orientation. A pulsatile heart loop with physiologically-accurate flow was created using a pulsatile pump. The coronary artery wall motion was compensated using a local block matching technique. Next, 2D and 3D velocity magnitude and WSS maps in the LAD coronary artery were estimated at different time points in the cardiac cycle using an ultrafast Doppler approach. The blood flow velocity estimated using the presented approach was compared with a commercially-available, calibrated single element blood flow velocity measurement system.

RESULTS

The resulting root mean square error (RMSE) of 2D velocity magnitude acquired from a high frequency, linear array transducer was less than 8% of the maximum velocity estimated by the commercial system.

CONCLUSION

When implemented in a forward-viewing intravascular ultrasound device, the presented approach will enable dynamic estimation of WSS, an indicator of plaque vulnerability in coronary arteries.

摘要

目的

壁切应力(WSS)是导致动脉粥样硬化的一个极其重要的物理因素。绘制局部、振荡 WSS 的空间分布可以识别冠状动脉疾病进展的重要机制。

方法

在这项研究中,使用超声和 18MHz 线性阵列换能器,以与 LAD 呈前向观察方向对齐的方式,在离体搏动猪心脏的左前降支(LAD)冠状动脉中估计血流速度和时变 WSS。使用脉动泵创建具有生理准确流量的脉动心脏循环。使用局部块匹配技术补偿冠状动脉壁运动。接下来,使用超快多普勒方法在心动周期的不同时间点估计 LAD 冠状动脉中的 2D 和 3D 速度幅度和 WSS 图。使用所提出的方法估计的血流速度与商业上可用的、经过校准的单元素血流速度测量系统进行了比较。

结果

从高频线性阵列换能器获得的 2D 速度幅度的均方根误差(RMSE)小于商业系统估计的最大速度的 8%。

结论

当在正向血管内超声设备中实施时,所提出的方法将能够动态估计壁切应力,这是冠状动脉斑块脆弱性的一个指标。

相似文献

1
Dynamic Coronary Blood Flow Velocity and Wall Shear Stress Estimation Using Ultrasound in an Ex Vivo Porcine Heart.
Cardiovasc Eng Technol. 2024 Feb;15(1):65-76. doi: 10.1007/s13239-023-00697-9. Epub 2023 Nov 14.
3
The impact of helical flow on coronary atherosclerotic plaque development.
Atherosclerosis. 2020 May;300:39-46. doi: 10.1016/j.atherosclerosis.2020.01.027. Epub 2020 Feb 7.
4
Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.
Comput Methods Biomech Biomed Engin. 2017 Feb;20(3):260-272. doi: 10.1080/10255842.2016.1215439. Epub 2016 Jul 28.
5
Wall Shear Stress Measurement by Ultrafast Vector Flow Imaging for Atherosclerotic Carotid Stenosis.
Ultraschall Med. 2021 Jun;42(3):297-305. doi: 10.1055/a-1060-0529. Epub 2019 Dec 19.
6
Wall shear stress mapping for human femoral artery based on ultrafast ultrasound vector Doppler estimations.
Med Phys. 2021 Nov;48(11):6755-6764. doi: 10.1002/mp.15230. Epub 2021 Sep 25.
9
Fluid dynamic analysis in a human left anterior descending coronary artery with arterial motion.
Ann Biomed Eng. 2004 Dec;32(12):1628-41. doi: 10.1007/s10439-004-7816-3.
10
The relationship between segmental wall shear stress and lipid core plaque derived from near-infrared spectroscopy.
Atherosclerosis. 2018 Aug;275:68-73. doi: 10.1016/j.atherosclerosis.2018.04.022. Epub 2018 May 5.

引用本文的文献

1
2D array imaging system for mechanically-steered, forward-viewing ultrasound guidewire.
Ultrasonics. 2024 Aug;142:107398. doi: 10.1016/j.ultras.2024.107398. Epub 2024 Jul 14.

本文引用的文献

1
A Pseudo-Spectral Method for Wall Shear Stress Estimation from Doppler Ultrasound Imaging in Coronary Arteries.
Cardiovasc Eng Technol. 2024 Dec;15(6):647-666. doi: 10.1007/s13239-024-00741-2. Epub 2024 Aug 5.
3
Efficacy of ultrasound vector flow imaging in tracking omnidirectional pulsatile flow.
Med Phys. 2023 Mar;50(3):1699-1714. doi: 10.1002/mp.16168. Epub 2023 Jan 14.
4
Time-Resolved Wall Shear Rate Mapping Using High-Frame-Rate Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Dec;69(12):3367-3381. doi: 10.1109/TUFFC.2022.3220560. Epub 2022 Nov 24.
5
Influence of right coronary artery motion, flow pulsatility and non-Newtonian rheology on wall shear stress metrics.
Front Bioeng Biotechnol. 2022 Aug 9;10:962687. doi: 10.3389/fbioe.2022.962687. eCollection 2022.
6
Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association.
Circulation. 2022 Feb 22;145(8):e153-e639. doi: 10.1161/CIR.0000000000001052. Epub 2022 Jan 26.
8
Wall shear stress mapping for human femoral artery based on ultrafast ultrasound vector Doppler estimations.
Med Phys. 2021 Nov;48(11):6755-6764. doi: 10.1002/mp.15230. Epub 2021 Sep 25.
10
Dynamic Myocardial Ultrasound Localization Angiography.
IEEE Trans Med Imaging. 2021 Dec;40(12):3379-3388. doi: 10.1109/TMI.2021.3086115. Epub 2021 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验