Suppr超能文献

细胞内钙信号转导受损导致 突变小鼠与年龄相关的脑小血管病。

Impaired intracellular Ca signaling contributes to age-related cerebral small vessel disease in mutant mice.

机构信息

Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA.

Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94158, USA.

出版信息

Sci Signal. 2023 Nov 14;16(811):eadi3966. doi: 10.1126/scisignal.adi3966.

Abstract

Humans and mice with mutations in and manifest hallmarks of cerebral small vessel disease (cSVD). Mice with a missense mutation in at amino acid 1344 () exhibit age-dependent intracerebral hemorrhages (ICHs) and brain lesions. Here, we report that this pathology was associated with the loss of myogenic vasoconstriction, an intrinsic vascular response essential for the autoregulation of cerebral blood flow. Electrophysiological analyses showed that the loss of myogenic constriction resulted from blunted pressure-induced smooth muscle cell (SMC) membrane depolarization. Furthermore, we found that dysregulation of membrane potential was associated with impaired Ca-dependent activation of large-conductance Ca-activated K (BK) and transient receptor potential melastatin 4 (TRPM4) cation channels linked to disruptions in sarcoplasmic reticulum (SR) Ca signaling. mutations impair protein folding, which can cause SR stress. Treating mice with 4-phenylbutyrate, a compound that promotes the trafficking of misfolded proteins and alleviates SR stress, restored SR Ca signaling, maintained BK and TRPM4 channel activity, prevented loss of myogenic tone, and reduced ICHs. We conclude that alterations in SR Ca handling that impair ion channel activity result in dysregulation of SMC membrane potential and loss of myogenic tone and contribute to age-related cSVD in mice.

摘要

和 突变的人类和小鼠表现出脑小血管疾病 (cSVD) 的特征。在 1344 位氨基酸处具有错义突变的小鼠表现出与年龄相关的脑出血 (ICH) 和脑部病变。在这里,我们报告称,这种病理学与肌源性血管收缩的丧失有关,肌源性血管收缩是脑血流自动调节所必需的固有血管反应。电生理分析表明,肌源性收缩的丧失是由于平滑肌细胞 (SMC) 膜去极化引起的压力诱导变钝。此外,我们发现,膜电位的失调与受损的 Ca 依赖性激活有关,这种激活与大电导钙激活钾 (BK) 和瞬时受体电位 melastatin 4 (TRPM4) 阳离子通道的紊乱有关,而这些通道与肌浆网 (SR) Ca 信号的紊乱有关。 突变会损害蛋白质折叠,从而导致 SR 应激。用 4-苯基丁酸治疗 小鼠,该化合物可促进错误折叠蛋白的转运并减轻 SR 应激,恢复 SR Ca 信号,维持 BK 和 TRPM4 通道活性,防止肌源性张力丧失,并减少 ICH。我们的结论是,SR Ca 处理的改变会损害离子通道活性,导致 SMC 膜电位失调和肌源性张力丧失,并导致 小鼠与年龄相关的 cSVD。

相似文献

1
Impaired intracellular Ca signaling contributes to age-related cerebral small vessel disease in mutant mice.
Sci Signal. 2023 Nov 14;16(811):eadi3966. doi: 10.1126/scisignal.adi3966.
2
Faulty TRPM4 channels underlie age-dependent cerebral vascular dysfunction in Gould syndrome.
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2217327120. doi: 10.1073/pnas.2217327120. Epub 2023 Jan 24.
4
Elevated TGFβ signaling contributes to cerebral small vessel disease in mouse models of Gould syndrome.
Matrix Biol. 2023 Jan;115:48-70. doi: 10.1016/j.matbio.2022.11.007. Epub 2022 Nov 23.
5
Protein kinase C regulates vascular myogenic tone through activation of TRPM4.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2613-22. doi: 10.1152/ajpheart.01286.2006. Epub 2007 Feb 9.
6
Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice.
Am J Physiol Heart Circ Physiol. 2013 Dec;305(12):H1698-708. doi: 10.1152/ajpheart.00377.2013. Epub 2013 Oct 4.
7
TGFβ Signaling Dysregulation May Contribute to COL4A1-Related Glaucomatous Optic Nerve Damage.
Invest Ophthalmol Vis Sci. 2024 May 1;65(5):15. doi: 10.1167/iovs.65.5.15.
8
Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries.
Circ Res. 2004 Oct 29;95(9):922-9. doi: 10.1161/01.RES.0000147311.54833.03. Epub 2004 Oct 7.
9
Nanoscale remodeling of ryanodine receptor cluster size underlies cerebral microvascular dysfunction in Duchenne muscular dystrophy.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):E9745-E9752. doi: 10.1073/pnas.1804593115. Epub 2018 Sep 4.
10
COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke.
Am J Hum Genet. 2012 Jan 13;90(1):91-101. doi: 10.1016/j.ajhg.2011.11.022. Epub 2011 Dec 29.

引用本文的文献

1
Collagen IV in Gould syndrome and Alport syndrome.
Nat Rev Nephrol. 2025 Jul 31. doi: 10.1038/s41581-025-00982-x.
2
Role of the Renin-Angiotensin System in Blood Pressure Regulation in Smooth Muscle-Specific Cullin-3 Deficient Mice.
Hypertension. 2025 Jul;82(7):1208-1220. doi: 10.1161/HYPERTENSIONAHA.125.25045. Epub 2025 May 14.
3
A multifunction murine Col4a1 allele reveals potential gene therapy parameters for Gould syndrome.
J Cell Biol. 2025 Jun 2;224(6). doi: 10.1083/jcb.202409153. Epub 2025 Apr 25.
4
The pathogenesis of cerebral small vessel disease and vascular cognitive impairment.
Physiol Rev. 2025 Jul 1;105(3):1075-1171. doi: 10.1152/physrev.00028.2024. Epub 2025 Feb 18.
5
Skeletal pathology in mouse models of Gould syndrome is partially alleviated by genetically reducing TGFβ signaling.
Matrix Biol. 2024 Nov;133:1-13. doi: 10.1016/j.matbio.2024.07.005. Epub 2024 Aug 6.
6
Pathophysiology of cerebral small vessel disease: a journey through recent discoveries.
J Clin Invest. 2024 May 15;134(10):e172841. doi: 10.1172/JCI172841.
7
Evaluating neural crest cell migration in a Col4a1 mutant mouse model of ocular anterior segment dysgenesis.
Cells Dev. 2024 Sep;179:203926. doi: 10.1016/j.cdev.2024.203926. Epub 2024 May 9.
8
Functional, Structural and Proteomic Effects of Ageing in Resistance Arteries.
Int J Mol Sci. 2024 Feb 23;25(5):2601. doi: 10.3390/ijms25052601.

本文引用的文献

1
Faulty TRPM4 channels underlie age-dependent cerebral vascular dysfunction in Gould syndrome.
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2217327120. doi: 10.1073/pnas.2217327120. Epub 2023 Jan 24.
2
Elevated TGFβ signaling contributes to cerebral small vessel disease in mouse models of Gould syndrome.
Matrix Biol. 2023 Jan;115:48-70. doi: 10.1016/j.matbio.2022.11.007. Epub 2022 Nov 23.
4
Calcium as a reliable marker for the quantitative assessment of endoplasmic reticulum stress in live cells.
J Biol Chem. 2021 Jan-Jun;296:100779. doi: 10.1016/j.jbc.2021.100779. Epub 2021 May 14.
5
Guidelines for the measurement of vascular function and structure in isolated arteries and veins.
Am J Physiol Heart Circ Physiol. 2021 Jul 1;321(1):H77-H111. doi: 10.1152/ajpheart.01021.2020. Epub 2021 May 14.
6
Arterial Supply of the Thalamus: A Comprehensive Review.
World Neurosurg. 2020 May;137:310-318. doi: 10.1016/j.wneu.2020.01.237. Epub 2020 Feb 7.
7
Differential expression of angiotensin II type 1 receptor subtypes within the cerebral microvasculature.
Am J Physiol Heart Circ Physiol. 2020 Feb 1;318(2):H461-H469. doi: 10.1152/ajpheart.00582.2019. Epub 2019 Dec 30.
8
Endoplasmic Reticulum Stress Coping Mechanisms and Lifespan Regulation in Health and Diseases.
Front Cell Dev Biol. 2019 May 21;7:84. doi: 10.3389/fcell.2019.00084. eCollection 2019.
9
Processing Pipeline for Atlas-Based Imaging Data Analysis of Structural and Functional Mouse Brain MRI (AIDAmri).
Front Neuroinform. 2019 Jun 4;13:42. doi: 10.3389/fninf.2019.00042. eCollection 2019.
10
CNS small vessel disease: A clinical review.
Neurology. 2019 Jun 11;92(24):1146-1156. doi: 10.1212/WNL.0000000000007654. Epub 2019 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验