Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany.
Institut National de la Santé et de la Recherche Médicale (Inserm U1195), Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.
J Neurosci. 2024 Jan 10;44(2):e0837232023. doi: 10.1523/JNEUROSCI.0837-23.2023.
Startle disease is due to the disruption of recurrent inhibition in the spinal cord. Most common causes are genetic variants in genes (, ) encoding inhibitory glycine receptor (GlyR) subunits. The adult GlyR is a heteropentameric complex composed of α1 and β subunits that localizes at postsynaptic sites and replaces embryonically expressed GlyRα2 homomers. The human GlyR variants of and , dominant and recessive, have been intensively studied in vitro. However, the role of unaffected GlyRβ, essential for synaptic GlyR localization, in the presence of mutated GlyRα1 in vivo is not fully understood. Here, we used knock-in mice expressing endogenous mEos4b-tagged GlyRβ that were crossed with mouse startle disease mutants. We explored the role of GlyRβ under disease conditions in mice carrying a missense mutation () or resulting from the loss of GlyRα1 (). Interestingly, synaptic targeting of GlyRβ was largely unaffected in both mouse mutants. While synaptic morphology appears unaltered in animals, synapses were notably smaller in homozygous animals. Hence, GlyRβ enables transport of functionally impaired GlyRα1 missense variants to synaptic sites in animals, which has an impact on the efficacy of possible compensatory mechanisms. The observed enhanced GlyRα2 expression in animals points to a compensation by other GlyRα subunits. However, trafficking of GlyRα2β complexes to synaptic sites remains functionally insufficient, and homozygous mice still die at 3 weeks after birth. Thus, both functional and structural deficits can affect glycinergic neurotransmission in severe startle disease, eliciting different compensatory mechanisms in vivo.
惊跳病是由于脊髓中复发性抑制的中断引起的。最常见的原因是编码抑制性甘氨酸受体(GlyR)亚基的基因(,)中的遗传变异。成人 GlyR 是由α1 和β亚基组成的异五聚体复合物,位于突触后部位,并取代胚胎表达的 GlyRα2 同源物。和,显性和隐性的人类 GlyR 变体,已经在体外进行了深入研究。然而,在体内存在突变 GlyRα1 的情况下,对于突触 GlyR 定位至关重要的未受影响的 GlyRβ的作用尚未完全理解。在这里,我们使用表达内源性 mEos4b 标记的 GlyRβ的 knock-in 小鼠与小鼠惊跳病突变体杂交。我们探索了在携带错义突变()或 GlyRα1 缺失()的小鼠中,GlyRβ在疾病状态下的作用。有趣的是,在两种小鼠突变体中,GlyRβ的突触靶向作用基本上没有受到影响。虽然在动物中突触形态似乎没有改变,但在纯合子动物中突触明显变小。因此,GlyRβ使功能受损的 GlyRα1 错义变体能够转运到动物的突触部位,这对可能的补偿机制的功效有影响。在动物中观察到的增强的 GlyRα2 表达表明其他 GlyRα 亚基的代偿。然而,GlyRα2β 复合物向突触部位的转运仍然在功能上不足,并且纯合子动物仍然在出生后 3 周死亡。因此,功能和结构缺陷都可能影响严重惊跳病中的甘氨酸能神经传递,并在体内引发不同的补偿机制。