Suppr超能文献

用于实际器件工艺的大面积氮化镓/3C-碳化硅/金刚石结的高热稳定性和低热阻

High Thermal Stability and Low Thermal Resistance of Large Area GaN/3C-SiC/Diamond Junctions for Practical Device Processes.

作者信息

Kagawa Ryo, Cheng Zhe, Kawamura Keisuke, Ohno Yutaka, Moriyama Chiharu, Sakaida Yoshiki, Ouchi Sumito, Uratani Hiroki, Inoue Koji, Nagai Yasuyoshi, Shigekawa Naoteru, Liang Jianbo

机构信息

Department of Electronic Information Systems, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.

School of Integrated Circuits and Frontier Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China.

出版信息

Small. 2024 Mar;20(13):e2305574. doi: 10.1002/smll.202305574. Epub 2023 Nov 14.

Abstract

Thermal management is critical in contemporary electronic systems, and integrating diamond with semiconductors offers the most promising solution to improve heat dissipation. However, developing a technique that can fully exploit the high thermal conductivity of diamond, withstand high-temperature annealing processes, and enable mass production is a significant challenge. In this study, the successful transfer of AlGaN/GaN/3C-SiC layers grown on Si to a large-size diamond substrate is demonstrated, followed by the fabrication of GaN high electron mobility transistors (HEMTs) on the diamond. Notably, no exfoliation of 3C-SiC/diamond bonding interfaces is observed even after annealing at 1100 °C, which is essential for high-quality GaN crystal growth on the diamond. The thermal boundary conductance of the 3C-SiC-diamond interface reaches ≈55 MW m K, which is efficient for device cooling. GaN HEMTs fabricated on the diamond substrate exhibit the highest maximum drain current and the lowest surface temperature compared to those on Si and SiC substrates. Furthermore, the device thermal resistance of GaN HEMTs on the diamond substrate is significantly reduced compared to those on SiC substrates. These results indicate that the GaN/3C-SiC on diamond technique has the potential to revolutionize the development of power and radio-frequency electronics with improved thermal management capabilities.

摘要

热管理在当代电子系统中至关重要,将金刚石与半导体集成是改善散热最具前景的解决方案。然而,开发一种能够充分利用金刚石的高导热性、承受高温退火工艺并实现大规模生产的技术是一项重大挑战。在本研究中,展示了将生长在硅上的AlGaN/GaN/3C-SiC层成功转移到大型金刚石衬底上,随后在金刚石上制造了氮化镓高电子迁移率晶体管(HEMT)。值得注意的是,即使在1100°C退火后,也未观察到3C-SiC/金刚石键合界面的剥落,这对于在金刚石上高质量生长氮化镓晶体至关重要。3C-SiC-金刚石界面的热边界电导达到约55 MW m⁻² K⁻¹,这对器件冷却很有效。与在硅和碳化硅衬底上制造的氮化镓HEMT相比,在金刚石衬底上制造的氮化镓HEMT表现出最高的最大漏极电流和最低的表面温度。此外,与碳化硅衬底上的器件相比,金刚石衬底上氮化镓HEMT的器件热阻显著降低。这些结果表明,金刚石上的氮化镓/3C-SiC技术有潜力凭借改进的热管理能力彻底改变功率和射频电子学的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验