Durango María C, Torres-Silva Ever A, Orozco-Duque Andrés
Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Antioquia, Colombia.
Facultad de Ingenierías, Universidad de Medellín, Antioquia, Colombia.
Healthc Inform Res. 2023 Oct;29(4):286-300. doi: 10.4258/hir.2023.29.4.286. Epub 2023 Oct 31.
A substantial portion of the data contained in Electronic Health Records (EHR) is unstructured, often appearing as free text. This format restricts its potential utility in clinical decision-making. Named entity recognition (NER) methods address the challenge of extracting pertinent information from unstructured text. The aim of this study was to outline the current NER methods and trace their evolution from 2011 to 2022.
We conducted a methodological literature review of NER methods, with a focus on distinguishing the classification models, the types of tagging systems, and the languages employed in various corpora.
Several methods have been documented for automatically extracting relevant information from EHRs using natural language processing techniques such as NER and relation extraction (RE). These methods can automatically extract concepts, events, attributes, and other data, as well as the relationships between them. Most NER studies conducted thus far have utilized corpora in English or Chinese. Additionally, the bidirectional encoder representation from transformers using the BIO tagging system architecture is the most frequently reported classification scheme. We discovered a limited number of papers on the implementation of NER or RE tasks in EHRs within a specific clinical domain.
EHRs play a pivotal role in gathering clinical information and could serve as the primary source for automated clinical decision support systems. However, the creation of new corpora from EHRs in specific clinical domains is essential to facilitate the swift development of NER and RE models applied to EHRs for use in clinical practice.
电子健康记录(EHR)中包含的大量数据是非结构化的,通常以自由文本形式出现。这种格式限制了其在临床决策中的潜在效用。命名实体识别(NER)方法解决了从非结构化文本中提取相关信息的挑战。本研究的目的是概述当前的NER方法,并追溯其从2011年到2022年的发展历程。
我们对NER方法进行了方法学文献综述,重点是区分分类模型、标记系统类型以及各种语料库中使用的语言。
已经记录了几种使用自然语言处理技术(如NER和关系提取(RE))从EHR中自动提取相关信息的方法。这些方法可以自动提取概念、事件、属性和其他数据,以及它们之间的关系。迄今为止进行的大多数NER研究都使用了英语或中文语料库。此外,使用BIO标记系统架构的基于变换器的双向编码器表示是最常报告的分类方案。我们发现关于在特定临床领域的EHR中实施NER或RE任务的论文数量有限。
EHR在收集临床信息方面发挥着关键作用,可以作为自动化临床决策支持系统的主要来源。然而,在特定临床领域从EHR创建新的语料库对于促进应用于EHR的NER和RE模型在临床实践中的快速发展至关重要。