Suppr超能文献

用于时态网络归纳链接预测的距离感知学习

Distance-Aware Learning for Inductive Link Prediction on Temporal Networks.

作者信息

Pan Zhiqiang, Cai Fei, Liu Xinwang, Chen Honghui

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):978-990. doi: 10.1109/TNNLS.2023.3328924. Epub 2025 Jan 7.

Abstract

Inductive link prediction on temporal networks aims to predict the future links associated with node(s) unseen in the historical timestamps. Existing methods generate the predictions mainly by learning node representation from the node/edge attributes as well as the network dynamics or by measuring the distance between nodes on the temporal network structure. However, the attribute information is unavailable in many realistic applications and the structure-aware methods highly rely on nodes' common neighbors, which are difficult to accurately detect, especially in sparse temporal networks. Thus, we propose a distance-aware learning (DEAL) approach for inductive link prediction on temporal networks. Specifically, we first design an adaptive sampling method to extract temporal adaptive walks for nodes, increasing the probability of including the common neighbors between nodes. Then, we design a dual-channel distance measuring component, which simultaneously measures the distance between nodes in the embedding space and on the dynamic graph structure for predicting future inductive edges. Extensive experiments are conducted on three public temporal network datasets, i.e., MathOverflow, AskUbuntu, and StackOverflow. The experimental results validate the superiority of DEAL over the state-of-the-art baselines in terms of accuracy, area under the ROC curve (AUC), and average precision (AP), where the improvements are especially obvious in scenarios with only limited data.

摘要

时间网络上的归纳链接预测旨在预测与历史时间戳中未出现的节点相关的未来链接。现有方法主要通过从节点/边属性以及网络动态中学习节点表示,或者通过测量时间网络结构上节点之间的距离来生成预测。然而,在许多实际应用中属性信息不可用,并且结构感知方法高度依赖于节点的共同邻居,而这些邻居很难准确检测,尤其是在稀疏时间网络中。因此,我们提出了一种用于时间网络归纳链接预测的距离感知学习(DEAL)方法。具体来说,我们首先设计一种自适应采样方法来为节点提取时间自适应游走,增加包含节点之间共同邻居的概率。然后,我们设计一个双通道距离测量组件,它同时测量嵌入空间中节点之间以及动态图结构上节点之间的距离,以预测未来的归纳边。我们在三个公共时间网络数据集上进行了广泛的实验,即MathOverflow、AskUbuntu和StackOverflow。实验结果验证了DEAL在准确性、ROC曲线下面积(AUC)和平均精度(AP)方面优于现有最先进的基线方法,在数据有限的场景中改进尤为明显。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验