Suppr超能文献

具有小分数电荷和分数自旋误差的范围分离局域杂化泛函:摆脱密度泛函的零和博弈

Range-Separated Local Hybrid Functionals with Small Fractional-Charge and Fractional-Spin Errors: Escaping the Zero-Sum Game of DFT Functionals.

作者信息

Fürst Susanne, Kaupp Martin, Wodyński Artur

机构信息

Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany.

出版信息

J Chem Theory Comput. 2023 Dec 12;19(23):8639-8653. doi: 10.1021/acs.jctc.3c00877. Epub 2023 Nov 16.

Abstract

Extending recent developments on strong-correlation (sc) corrections to local hybrid functionals to the recent accurate ωLH22t range-separated local hybrid, a series of highly flexible strong-correlation-corrected range-separated local hybrids (scRSLHs) has been constructed and evaluated. This has required the position-dependent reduction of both short- and long-range exact-exchange admixtures in regions of space characterized by strong static correlations. Using damping procedures provides scRSLHs that retain largely the excellent performance of ωLH22t for weakly correlated situations and, in particular, for accurate quasiparticle energies of a wide variety of systems while reducing dramatically static-correlation errors, e.g., in stretched-bond situations. An additional correction to the local mixing function to reduce delocalization errors in abnormal open-shell situations provides further improvements in thermochemical and kinetic parameters, making scRSLH functionals such as ωLH23tdE or ωLH23tdP promising tools for complex molecular or condensed-phase systems, where low fractional-charge and fractional-spin errors are simultaneously important. The proposed rung 4 functionals thereby largely escape the usual zero-sum game between these two quantities and are expected to open new areas of accurate computations by Kohn-Sham DFT. At the same time, they require essentially no extra computational effort over the underlying ωLH22t functional, which means that their use is only moderately more demanding than that of global, local, or range-separated hybrid functionals.

摘要

将强关联(sc)校正的最新进展扩展到局部杂化泛函,进而应用于最近精确的ωLH22t范围分离局部杂化泛函,一系列高度灵活的强关联校正范围分离局部杂化泛函(scRSLHs)已被构建并评估。这需要在以强静态关联为特征的空间区域中,对短程和长程精确交换混合进行位置依赖的减少。使用阻尼程序可得到scRSLHs,其在弱关联情况下,特别是对于各种系统的精确准粒子能量,在很大程度上保留了ωLH22t的优异性能,同时显著降低了静态关联误差,例如在拉伸键情况下。对局部混合函数进行额外校正以减少异常开壳情况下的离域误差,可进一步改善热化学和动力学参数,使得诸如ωLH23tdE或ωLH23tdP等scRSLH泛函成为复杂分子或凝聚相系统的有前景的工具,在这些系统中,低分数电荷和分数自旋误差同时很重要。由此提出的第4级泛函在很大程度上避免了这两个量之间通常的零和博弈,并有望通过Kohn-Sham密度泛函理论开辟精确计算的新领域。同时,与基础的ωLH22t泛函相比,它们基本上不需要额外的计算量,这意味着使用它们的要求仅比全局、局部或范围分离杂化泛函稍高一些。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验