Dolores Merchán M, Pawar Nisha, Santamaria Andreas, Sánchez-Fernández Rosalía, Konovalov Oleg, Maestro Armando, Mercedes Velázquez M
Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E37008 Salamanca, Spain; Grupo de Nanotecnología, Universidad de Salamanca, E37008 Salamanca, Spain; Laboratorio de Nanoelectrónica and Nanomateriales, USAL-NANOLAB, Universidad de Salamanca, E37008 Salamanca, Spain.
Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, E-20018 San Sebastián, Spain.
J Colloid Interface Sci. 2024 Feb;655:664-675. doi: 10.1016/j.jcis.2023.11.022. Epub 2023 Nov 10.
Graphene oxide-based nanotechnology has aroused a great interest due to its applications in the biomedical and optoelectronic fields. The wide use of these materials makes it necessary to study its potential toxicity associated with the inhalation of Graphene Oxide (GO) nanoparticles and its interaction with the lung surfactant. Langmuir monolayers have proven to be an excellent tool for studying the properties of the lung surfactant and the effect of intercalation of nanoparticles on its structure and properties. Therefore, to know the origin of the phospholipids/GO interaction and the structure of the lipid layer with GO, in this work we study the effect of the insertion of GO sheets on a Langmuir film of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC).
Surface pressure-area isotherms, Neutron (NR) and X-ray Reflectivity (XRR) and Grazing Incidence X-ray Diffraction (GIXD) measurements of hydrogenated and deuterated DPPC monolayers with and without GO have been carried out.
The results outline a strong interaction between the GO and the zwitterionic form of DPPC and prove that GO is in three regions of the DPPC monolayer, the aliphatic chains of DPPC, the head groups and water in the subphase. Comparison between results obtained with hydrogenated and deuterated DPPC allows concluding that both, electrostatic attractions, and dispersion forces are responsible of the interaction GO/DPPC. Results also demonstrated that the insertion of GO into the DPPC aliphatic chains does not induce significant changes on unit cell of DPPC.
基于氧化石墨烯的纳米技术因其在生物医学和光电子领域的应用而引起了极大的关注。这些材料的广泛使用使得有必要研究与吸入氧化石墨烯(GO)纳米颗粒相关的潜在毒性及其与肺表面活性剂的相互作用。朗缪尔单分子层已被证明是研究肺表面活性剂性质以及纳米颗粒插入对其结构和性质影响的极佳工具。因此,为了了解磷脂/GO相互作用的起源以及含GO的脂质层结构,在本工作中我们研究了GO片层插入1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPC)朗缪尔膜的影响。
进行了有无GO的氢化和氘代DPPC单分子层的表面压力-面积等温线、中子反射率(NR)、X射线反射率(XRR)以及掠入射X射线衍射(GIXD)测量。
结果表明GO与DPPC的两性离子形式之间存在强烈相互作用,并证明GO存在于DPPC单分子层的三个区域,即DPPC的脂肪链、头部基团以及亚相中。氢化和氘代DPPC所得结果的比较表明,静电引力和色散力共同导致了GO/DPPC的相互作用。结果还表明,GO插入DPPC脂肪链不会引起DPPC晶胞的显著变化。