Suppr超能文献

利用 AlphaFold 模型进行药物发现:可行性和挑战。以组蛋白去乙酰化酶 11 为例。

Utilization of AlphaFold models for drug discovery: Feasibility and challenges. Histone deacetylase 11 as a case study.

机构信息

Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.

Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.

出版信息

Comput Biol Med. 2023 Dec;167:107700. doi: 10.1016/j.compbiomed.2023.107700. Epub 2023 Nov 10.

Abstract

Histone deacetylase 11 (HDAC11), an enzyme that cleaves acyl groups from acylated lysine residues, is the sole member of class IV of HDAC family with no reported crystal structure so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms which complicates the conventional template-based homology modeling. AlphaFold is a neural network machine learning approach for predicting the 3D structures of proteins with atomic accuracy even in absence of similar structures. However, the structures predicted by AlphaFold are missing small molecules as ligands and cofactors. In our study, we first optimized the HDAC11 AlphaFold model by adding the catalytic zinc ion followed by assessment of the usability of the model by docking of the selective inhibitor FT895. Minimization of the optimized model in presence of transplanted inhibitors, which have been described as HDAC11 inhibitors, was performed. Four complexes were generated and proved to be stable using three replicas of 50 ns MD simulations and were successfully utilized for docking of the selective inhibitors FT895, MIR002 and SIS17. For SIS17, The most reasonable pose was selected based on structural comparison between HDAC6, HDAC8 and the HDAC11 optimized AlphaFold model. The manually optimized HDAC11 model is thus able to explain the binding behavior of known HDAC11 inhibitors and can be used for further structure-based optimization.

摘要

组蛋白去乙酰化酶 11(HDAC11)是一种从酰化赖氨酸残基上切割酰基的酶,是 HDAC 家族第四类中唯一的成员,迄今为止尚未报道其晶体结构。HDAC11 的催化结构域与其他 HDAC 同工酶的序列同一性较低,这使得基于常规模板的同源建模变得复杂。AlphaFold 是一种神经网络机器学习方法,可用于预测蛋白质的 3D 结构,具有原子精度,即使在没有类似结构的情况下也是如此。然而,AlphaFold 预测的结构缺少小分子作为配体和辅因子。在我们的研究中,我们首先通过添加催化锌离子对 HDAC11 AlphaFold 模型进行了优化,然后通过对接选择性抑制剂 FT895 评估了模型的可用性。在存在已描述为 HDAC11 抑制剂的移植抑制剂的情况下对优化后的模型进行了最小化。生成了四个复合物,并通过三个 50ns MD 模拟的副本证明了它们的稳定性,并且成功地用于对接选择性抑制剂 FT895、MIR002 和 SIS17。对于 SIS17,根据 HDAC6、HDAC8 和优化后的 HDAC11 AlphaFold 模型之间的结构比较,选择了最合理的构象。因此,手动优化的 HDAC11 模型能够解释已知的 HDAC11 抑制剂的结合行为,并可用于进一步基于结构的优化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验