Suppr超能文献

ProRefiner:一种基于信息熵的全局图注意力逆蛋白折叠细化策略。

ProRefiner: an entropy-based refining strategy for inverse protein folding with global graph attention.

机构信息

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Central Ave, Hong Kong, China.

Zhejiang Lab, Kechuang Avenue, Hangzhou, China.

出版信息

Nat Commun. 2023 Nov 16;14(1):7434. doi: 10.1038/s41467-023-43166-6.

Abstract

Inverse Protein Folding (IPF) is an important task of protein design, which aims to design sequences compatible with a given backbone structure. Despite the prosperous development of algorithms for this task, existing methods tend to rely on noisy predicted residues located in the local neighborhood when generating sequences. To address this limitation, we propose an entropy-based residue selection method to remove noise in the input residue context. Additionally, we introduce ProRefiner, a memory-efficient global graph attention model to fully utilize the denoised context. Our proposed method achieves state-of-the-art performance on multiple sequence design benchmarks in different design settings. Furthermore, we demonstrate the applicability of ProRefiner in redesigning Transposon-associated transposase B, where six out of the 20 variants we propose exhibit improved gene editing activity.

摘要

反向蛋白质折叠(Inverse Protein Folding,简称 IPF)是蛋白质设计的一项重要任务,旨在设计与给定骨架结构兼容的序列。尽管针对该任务的算法已经取得了蓬勃的发展,但现有方法在生成序列时往往依赖于局部邻域中预测的存在噪声的残基。为了解决这一局限性,我们提出了一种基于熵的残基选择方法,以去除输入残基环境中的噪声。此外,我们引入了 ProRefiner,这是一种内存高效的全局图注意力模型,可充分利用去噪后的上下文。我们提出的方法在不同设计环境下的多个序列设计基准测试中达到了最先进的性能。此外,我们还展示了 ProRefiner 在重新设计转座酶 B 中的应用,我们提出的 20 个变体中有 6 个表现出了提高的基因编辑活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1a/10654420/8eccaf3437c9/41467_2023_43166_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验