Pawar Anand, Pardasani Kamal Raj
Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India.
Cogn Neurodyn. 2023 Dec;17(6):1661-1682. doi: 10.1007/s11571-022-09902-2. Epub 2022 Nov 8.
Experimental studies have reported the dependence of nitric oxide (NO) on the regulation of neuronal calcium ([Ca]) dynamics in neurons. But, there is no model available to estimate the disorders caused by various parameters in their regulatory dynamics leading to various neuronal disorders. A mathematical model to analyze the impacts due to alterations in various parameters like buffer, ryanodine receptor, serca pump, source influx, etc. leading to regulation and dysregulation of the spatiotemporal calcium and NO dynamics in neuron cells is constructed using a system of reaction-diffusion equations. The numerical simulation is performed with the finite element approach. The disturbances in the different constitutive processes of [Ca] and nitric oxide including source influx, buffer mechanism, ryanodine receptor, serca pump, IP receptor, etc. can be responsible for the dysregulation in the [Ca] and NO dynamics in neurons. Also, the results reveal novel information about the magnitude and intensity of disorders in response to a range of alterations in various parameters of this neuronal dynamics, which can cause dysregulation leading to neuronal diseases like Parkinson's, cerebral ischemia, trauma, etc.
实验研究报告了一氧化氮(NO)对神经元中神经元钙([Ca])动力学调节的依赖性。但是,没有可用的模型来估计其调节动力学中各种参数引起的紊乱,这些紊乱会导致各种神经元疾病。使用反应扩散方程组构建了一个数学模型,以分析诸如缓冲剂、兰尼碱受体、肌浆网钙ATP酶泵、源流入等各种参数的变化对神经元细胞时空钙和NO动力学的调节和失调所产生的影响。采用有限元方法进行数值模拟。[Ca]和一氧化氮的不同组成过程中的干扰,包括源流入、缓冲机制、兰尼碱受体、肌浆网钙ATP酶泵、肌醇三磷酸受体等,可能导致神经元中[Ca]和NO动力学的失调。此外,结果揭示了关于这种神经元动力学各种参数一系列变化所引起的紊乱的大小和强度的新信息,这些变化可能导致失调,进而引发帕金森病、脑缺血、创伤等神经元疾病。