Suppr超能文献

ST-ITEF:时空术中任务估计框架,用于在角膜移植术中基于多目标跟踪识别手术阶段并预测器械路径。

ST-ITEF: Spatio-Temporal Intraoperative Task Estimating Framework to recognize surgical phase and predict instrument path based on multi-object tracking in keratoplasty.

作者信息

Feng Xiaojing, Zhang Xiaodong, Shi Xiaojun, Li Li, Wang Shaopeng

机构信息

School of Mechanical Engineering at Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, China.

School of Mechanical Engineering at Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, China.

出版信息

Med Image Anal. 2024 Jan;91:103026. doi: 10.1016/j.media.2023.103026. Epub 2023 Nov 13.

Abstract

Computer-assisted cognition guidance for surgical robotics by computer vision is a potential future outcome, which could facilitate the surgery for both operation accuracy and autonomy level. In this paper, multiple-object segmentation and feature extraction from this segmentation are combined to determine and predict surgical manipulation. A novel three-stage Spatio-Temporal Intraoperative Task Estimating Framework is proposed, with a quantitative expression derived from ophthalmologists' visual information process and also with the multi-object tracking of surgical instruments and human corneas involved in keratoplasty. In the estimation of intraoperative workflow, quantifying the operation parameters is still an open challenge. This problem is tackled by extracting key geometric properties from multi-object segmentation and calculating the relative position among instruments and corneas. A decision framework is further proposed, based on prior geometric properties, to recognize the current surgical phase and predict the instrument path for each phase. Our framework is tested and evaluated by real human keratoplasty videos. The optimized DeepLabV3 with image filtration won the competitive class-IoU in the segmentation task and the mean phase jaccard reached 55.58 % for the phase recognition. Both the qualitative and quantitative results indicate that our framework can achieve accurate segmentation and surgical phase recognition under complex disturbance. The Intraoperative Task Estimating Framework would be highly potential to guide surgical robots in clinical practice.

摘要

通过计算机视觉实现的用于手术机器人的计算机辅助认知引导是未来可能的成果,这有助于提高手术的操作准确性和自主水平。本文将多目标分割与基于该分割的特征提取相结合,以确定和预测手术操作。提出了一种新颖的三阶段时空术中任务估计框架,其定量表达式源自眼科医生的视觉信息处理过程,并且涉及角膜移植手术中手术器械和人眼角膜的多目标跟踪。在术中工作流程的估计中,量化操作参数仍然是一个悬而未决的挑战。通过从多目标分割中提取关键几何属性并计算器械与角膜之间的相对位置来解决此问题。进一步提出了一个基于先验几何属性的决策框架,以识别当前手术阶段并预测每个阶段的器械路径。我们的框架通过真实的人角膜移植手术视频进行了测试和评估。经过图像过滤优化的DeepLabV3在分割任务中赢得了具有竞争力的类交并比,并且阶段识别的平均相位杰卡德系数达到了55.58%。定性和定量结果均表明,我们的框架能够在复杂干扰下实现准确的分割和手术阶段识别。术中任务估计框架在临床实践中指导手术机器人具有很大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验