Suppr超能文献

自然阳光驱动的 Mn(aq)氧化和赤铁矿上 Mn 氧化物的多相形成。

Natural sunlight-driven oxidation of Mn(aq) and heterogeneous formation of Mn oxides on hematite.

机构信息

Department of Chemical Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea.

School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, United States.

出版信息

Chemosphere. 2024 Jan;348:140734. doi: 10.1016/j.chemosphere.2023.140734. Epub 2023 Nov 15.

Abstract

The oxidation of dissolved Mn(aq) plays a critical role in driving manganese cycles and regulating the fate of essential elements and contaminants in environmental systems. Based on sluggish oxidation rate, abiotic processes have been considered less effective oxidation pathway for manganese oxidation in environmental systems. Interestingly, a recent study (Jung et al., 2021) has shown that the rapid photochemical oxidation of Mn(aq) could be a feasible scenario to uncover the potential significance of abiotic Mn(aq) oxidation. Nevertheless, the significance of photochemical oxidation of Mn(aq) under natural sunlight exposure remains unclear. Here, we demonstrate the rapid photocatalytic oxidation of Mn(aq) and the heterogeneous growth of tunnel-structured Mn oxides under simulated freshwater and seawater conditions in the presence of natural sunlight and hematite. The natural sunlight-driven photocatalytic oxidation of Mn(aq) by hematite showed kinetic constants of 1.02 h and 0.342 h under freshwater and seawater conditions, respectively. The natural sunlight-driven photocatalytic oxidation rates are quite comparable to the results obtained from the previous laboratory test using artificial sunlight, which has ∼4.5 times stronger light intensity. It is likely because of ∼5.5 times larger light exposure area in the natural sunlight-driven photocatalytic oxidation than that of the laboratory test using artificial sunlight. We also elucidate the roles of cation species in controlling the oxidation rate of Mn(aq) and the crystalline structure of Mn oxide products. Specifically, in the presence of large amounts of cations, the oxidation rate of Mn(aq) was slower likely because of competitive adsorption. Furthermore, our findings highlight that Mg contributes significantly to the formation of large-tunneled Mn oxides. These results illuminate the importance of abiotic photocatalytic processes in controlling the redox chemistry of Mn in real environmental aqueous systems on the oxidation of Mn(aq), and provide an environmentally sustainable approach to effectively remediate water contaminated with Mn(aq) using natural sunlight.

摘要

溶解态 Mn(aq) 的氧化在驱动锰循环、调节环境系统中必需元素和污染物的归宿方面起着关键作用。基于缓慢的氧化速率,非生物过程被认为是环境系统中锰氧化的一种不太有效的氧化途径。有趣的是,最近的一项研究(Jung 等人,2021)表明,Mn(aq) 的快速光化学氧化可能是揭示非生物 Mn(aq)氧化潜在意义的可行方案。然而,在自然阳光照射下,Mn(aq)光化学氧化的意义仍不清楚。在这里,我们在存在天然阳光和赤铁矿的情况下,在模拟淡水和海水中证明了 Mn(aq)的快速光催化氧化和隧道结构 Mn 氧化物的多相生长。赤铁矿在淡水和海水中的自然阳光驱动的光催化氧化 Mn(aq)的反应动力学常数分别为 1.02 h 和 0.342 h。自然阳光驱动的光催化氧化速率与之前使用人工阳光进行的实验室测试结果相当,后者的光强度约大 4.5 倍。这可能是因为自然阳光驱动的光催化氧化的光暴露面积比使用人工阳光的实验室测试大 5.5 倍左右。我们还阐明了阳离子种类在控制 Mn(aq)氧化速率和 Mn 氧化物产物的晶体结构方面的作用。具体来说,在大量阳离子存在的情况下,Mn(aq)的氧化速率较慢,可能是因为竞争吸附。此外,我们的发现强调了 Mg 对大隧道 Mn 氧化物形成的重要贡献。这些结果说明了非生物光催化过程在控制实际环境水系统中 Mn 的氧化还原化学方面的重要性,并提供了一种使用自然阳光有效修复含 Mn(aq)水的环境可持续方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验