Suppr超能文献

个体中生物网络重连的共表达特异性分析。

Patient-specific analysis of co-expression to measure biological network rewiring in individuals.

机构信息

Beijing StoneWise Technology Co Ltd, Danling SOHO, Beijing, China

Beijing StoneWise Technology Co Ltd, Danling SOHO, Beijing, China.

出版信息

Life Sci Alliance. 2023 Nov 17;7(2). doi: 10.26508/lsa.202302253. Print 2024 Feb.

Abstract

To effectively understand the underlying mechanisms of disease and inform the development of personalized therapies, it is critical to harness the power of differential co-expression (DCE) network analysis. Despite the promise of DCE network analysis in precision medicine, current approaches have a major limitation: they measure an average differential network across multiple samples, which means the specific etiology of individual patients is often overlooked. To address this, we present Cosinet, a DCE-based single-sample network rewiring degree quantification tool. By analyzing two breast cancer datasets, we demonstrate that Cosinet can identify important differences in gene co-expression patterns between individual patients and generate scores for each individual that are significantly associated with overall survival, recurrence-free interval, and other clinical outcomes, even after adjusting for risk factors such as age, tumor size, HER2 status, and PAM50 subtypes. Cosinet represents a remarkable development toward unlocking the potential of DCE analysis in the context of precision medicine.

摘要

为了有效地理解疾病的潜在机制并为个性化治疗的发展提供信息,利用差异共表达(DCE)网络分析的力量至关重要。尽管 DCE 网络分析在精准医学中有很大的应用前景,但目前的方法存在一个主要的局限性:它们在多个样本上测量平均差异网络,这意味着个体患者的具体病因往往被忽视。为了解决这个问题,我们提出了 Cosinet,这是一种基于 DCE 的单样本网络重布线程度量化工具。通过分析两个乳腺癌数据集,我们证明 Cosinet 可以识别个体患者之间基因共表达模式的重要差异,并为每个个体生成得分,这些得分与总体生存率、无复发生存期和其他临床结果显著相关,即使在调整了年龄、肿瘤大小、HER2 状态和 PAM50 亚型等风险因素之后也是如此。Cosinet 代表了在精准医学背景下解锁 DCE 分析潜力的一项重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5e9/10656351/cc6a0b7f1e9d/LSA-2023-02253_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验