Hu Yue, Liu Jiawei, Lee Carmen, Luo Wenyu, Dong Jinfeng, Liang Zhishan, Chen Mengxin, Hu Erhai, Zhang Mingsheng, Debbie Soo Xiang Yun, Zhu Qiang, Li Fengkun, Rawat Rajdeep Singh, Ng Man-Fai, Zhong Lixiang, Han Bo, Geng Dongsheng, Yan Qingyu
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
ACS Nano. 2023 Dec 12;17(23):23637-23648. doi: 10.1021/acsnano.3c06798. Epub 2023 Nov 18.
Electrocatalytic nitrate (NO)/nitrite (NO) reduction reaction (eNORR) to ammonia under ambient conditions presents a green and promising alternative to the Haber-Bosch process. Practically available NO sources, such as wastewater or plasma-enabled nitrogen oxidation reaction (p-NOR), typically have low NO concentrations. Hence, electrocatalyst engineering is important for practical eNORR to obtain both high NH Faradaic efficiency (FE) and high yield rate. Herein, we designed balanced NO and proton adsorption by properly introducing Cu sites into the Fe/FeO electrocatalyst. During the eNORR process, the H adsorption is balanced, and the good NO affinity is maintained. As a consequence, the designed Cu-Fe/FeO catalyst exhibits promising performance, with an average NH FE of ∼98% and an average NH yield rate of 15.66 mg h cm under the low NO concentration (32.3 mM) of typical industrial wastewater at an applied potential of -0.6 V versus reversible hydrogen electrode (RHE). With low-power direct current p-NOR generated NO (23.5 mM) in KOH electrolyte, the Cu-Fe/FeO catalyst achieves an FE of ∼99% and a yield rate of 15.1 mg h cm for NH production at -0.5 V (vs RHE). The performance achieved in this study exceeds industrialization targets for NH production by exploiting two available low-concentration NO sources.
在环境条件下将硝酸盐(NO₃⁻)/亚硝酸盐(NO₂⁻)电催化还原反应(eNORR)为氨,是哈伯-博施法的一种绿色且有前景的替代方法。实际可用的NO源,如废水或等离子体驱动的氮氧化反应(p-NOR),通常NO浓度较低。因此,电催化剂工程对于实际的eNORR获得高NH₃法拉第效率(FE)和高产率很重要。在此,我们通过将Cu位点适当引入Fe/FeO电催化剂中,设计了平衡的NO和质子吸附。在eNORR过程中,H吸附得到平衡,并且保持了良好的NO亲和力。结果,所设计的Cu-Fe/FeO催化剂表现出有前景的性能,在相对于可逆氢电极(RHE)为-0.6 V的外加电势下,在典型工业废水的低NO浓度(32.3 mM)下,平均NH₃ FE约为98%,平均NH₃产率为15.66 mg h⁻¹ cm⁻²。在KOH电解液中,利用低功率直流p-NOR产生的NO(23.5 mM),Cu-Fe/FeO催化剂在-0.5 V(vs RHE)下实现了约99%的FE和15.1 mg h⁻¹ cm⁻²的NH₃产率。本研究中实现的性能通过利用两种可用的低浓度NO源,超过了NH₃生产的工业化目标。