Suppr超能文献

一种基于注意力3DUNET和视觉几何组19的深度神经网络,用于从磁共振成像中进行脑肿瘤分割和分类。

An attention 3DUNET and visual geometry group-19 based deep neural network for brain tumor segmentation and classification from MRI.

作者信息

Jyothi Parvathy, Dhanasekaran S

机构信息

Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India.

Department of Information Technology, Kalasalingam Academy of Research and Education, Krishnankoil, India.

出版信息

J Biomol Struct Dyn. 2025 Feb;43(2):730-741. doi: 10.1080/07391102.2023.2283164. Epub 2023 Nov 18.

Abstract

There has been an abrupt increase in brain tumor (BT) related medical cases during the past ten years. The tenth most typical type of tumor affecting millions of people is the BT. The cure rate can, however, rise if it is found early. When evaluating BT diagnosis and treatment options, MRI is a crucial tool. However, segmenting the tumors from magnetic resonance (MR) images is complex. The advancement of deep learning (DL) has led to the development of numerous automatic segmentation and classification approaches. However, most need improvement since they are limited to 2D images. So, this article proposes a novel and optimal DL system for segmenting and classifying the BTs from 3D brain MR images. Preprocessing, segmentation, feature extraction, feature selection, and tumor classification are the main phases of the proposed work. Preprocessing, such as noise removal, is performed on the collected brain MR images using bilateral filtering. The tumor segmentation uses spatial and channel attention-based three-dimensional u-shaped network (SC3DUNet) to segment the tumor lesions from the preprocessed data. After that, the feature extraction is done based on dilated convolution-based visual geometry group-19 (DCVGG-19), making the classification task more manageable. The optimal features are selected from the extracted feature sets using diagonal linear uniform and tangent flight included butterfly optimization algorithm. Finally, the proposed system applies an optimal hyperparameters-based deep neural network to classify the tumor classes. The experiments conducted on the BraTS2020 dataset show that the suggested method can segment tumors and categorize them more accurately than the existing state-of-the-art mechanisms.Communicated by Ramaswamy H. Sarma.

摘要

在过去十年中,与脑肿瘤(BT)相关的医疗病例急剧增加。影响数百万人的第十种最典型的肿瘤类型是脑肿瘤。然而,如果能早期发现,治愈率会提高。在评估脑肿瘤的诊断和治疗方案时,磁共振成像(MRI)是一种关键工具。然而,从磁共振(MR)图像中分割肿瘤是复杂的。深度学习(DL)的发展导致了许多自动分割和分类方法的出现。然而,大多数方法仍需改进,因为它们仅限于二维图像。因此,本文提出了一种新颖且最优的深度学习系统,用于从三维脑部MR图像中分割和分类脑肿瘤。预处理、分割、特征提取、特征选择和肿瘤分类是所提出工作的主要阶段。预处理,如去噪,使用双边滤波对收集到的脑部MR图像进行。肿瘤分割使用基于空间和通道注意力的三维U形网络(SC3DUNet)从预处理数据中分割肿瘤病变。之后,基于基于扩张卷积的视觉几何组19(DCVGG-19)进行特征提取,使分类任务更易于管理。使用包含对角线性均匀和切线飞行的蝴蝶优化算法从提取的特征集中选择最优特征。最后,所提出的系统应用基于最优超参数的深度神经网络对肿瘤类别进行分类。在BraTS2020数据集上进行的实验表明,所提出的方法比现有的最先进机制能更准确地分割肿瘤并对其进行分类。由拉马斯瓦米·H·萨尔马传达。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验