Suppr超能文献

一种用于治疗溃疡性结肠炎的胃肠道局部激活型 Janus 激酶抑制剂。

A gastrointestinal locally activating Janus kinase inhibitor to treat ulcerative colitis.

作者信息

Bu Yingzi, Traore Mohamed Dit Mady, Zhang Luchen, Wang Lu, Liu Zhongwei, Hu Hongxiang, Wang Meilin, Li Chengyi, Sun Duxin

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan, USA; Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, Michigan, USA.

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan, USA.

出版信息

J Biol Chem. 2023 Dec;299(12):105467. doi: 10.1016/j.jbc.2023.105467. Epub 2023 Nov 17.

Abstract

In this study, we integrated machine learning (ML), structure-tissue selectivity-activity-relationship (STAR), and wet lab synthesis/testing to design a gastrointestinal (GI) locally activating JAK inhibitor for ulcerative colitis treatment. The JAK inhibitor achieves site-specific efficacy through high local GI tissue selectivity while minimizing the requirement for JAK isoform specificity to reduce systemic toxicity. We used the ML model (CoGT) to classify whether the designed compounds were inhibitors or noninhibitors. Then we used the regression ML model (MTATFP) to predict their IC against related JAK isoforms of predicted JAK inhibitors. The ML model predicted MMT3-72, which was retained in the GI tract, to be a weak JAK1 inhibitor, while MMT3-72-M2, which accumulated in only GI tissues, was predicted to be an inhibitor of JAK1/2 and TYK2. ML docking methods were applied to simulate their docking poses in JAK isoforms. Application of these ML models enabled us to limit our synthetic efforts to MMT3-72 and MMT3-72-M2 for subsequent wet lab testing. The kinase assay confirmed MMT3-72 weakly inhibited JAK1, and MMT3-72-M2 inhibited JAK1/2 and TYK2. We found that MMT3-72 accumulated in the GI lumen, but not in GI tissue or plasma, but released MMT3-72-M2 accumulated in colon tissue with minimal exposure in the plasma. MMT3-72 achieved superior efficacy and reduced p-STAT3 in DSS-induced colitis. Overall, the integration of ML, the structure-tissue selectivity-activity-relationship system, and wet lab synthesis/testing could minimize the effort in the optimization of a JAK inhibitor to treat colitis. This site-specific inhibitor reduces systemic toxicity by minimizing the need for JAK isoform specificity.

摘要

在本研究中,我们整合了机器学习(ML)、结构-组织选择性-活性-关系(STAR)以及湿实验室合成/测试,以设计一种用于治疗溃疡性结肠炎的胃肠道(GI)局部激活的JAK抑制剂。该JAK抑制剂通过高局部GI组织选择性实现位点特异性疗效,同时将对JAK亚型特异性的要求降至最低以降低全身毒性。我们使用ML模型(CoGT)对设计的化合物是抑制剂还是非抑制剂进行分类。然后我们使用回归ML模型(MTATFP)预测它们对预测的JAK抑制剂相关JAK亚型的IC。ML模型预测保留在胃肠道中的MMT3-72是一种弱JAK1抑制剂,而仅在GI组织中积累的MMT3-72-M2被预测为JAK1/2和TYK2的抑制剂。应用ML对接方法模拟它们在JAK亚型中的对接姿势。这些ML模型的应用使我们能够将合成工作限制在MMT3-72和MMT3-72-M2上,以便随后进行湿实验室测试。激酶测定证实MMT3-72弱抑制JAK1,而MMT3-72-M2抑制JAK1/2和TYK2。我们发现MMT3-72在胃肠道腔中积累,但不在GI组织或血浆中积累,而释放的MMT3-72-M2在结肠组织中积累,在血浆中的暴露最小。MMT3-72在DSS诱导的结肠炎中实现了卓越的疗效并降低了p-STAT3。总体而言,ML、结构-组织选择性-活性-关系系统和湿实验室合成/测试的整合可以最大限度地减少优化治疗结肠炎的JAK抑制剂的工作量。这种位点特异性抑制剂通过最小化对JAK亚型特异性的需求来降低全身毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d5/10755797/b951b72c7331/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验