Felker Dana, Lee Kanghyun, Pospiech Thomas H, Morishima Yoshihiro, Zhang Haoming, Lau Miranda, Southworth Daniel R, Osawa Yoichi
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA.
J Biol Chem. 2024 Jan;300(1):105464. doi: 10.1016/j.jbc.2023.105464. Epub 2023 Nov 16.
Neuronal nitric oxide synthase (nNOS) is a homodimeric cytochrome P450-like enzyme that catalyzes the conversion of L-arginine to nitric oxide in the presence of NADPH and molecular oxygen. The binding of calmodulin (CaM) to a linker region between the FAD/FMN-containing reductase domain, and the heme-containing oxygenase domain is needed for electron transfer reactions, reduction of the heme, and NO synthesis. Due to the dynamic nature of the reductase domain and low resolution of available full-length structures, the exact conformation of the CaM-bound active complex during heme reduction is still unresolved. Interestingly, hydrogen-deuterium exchange and mass spectrometry studies revealed interactions of the FMN domain and CaM with the oxygenase domain for iNOS, but not nNOS. This finding prompted us to utilize covalent crosslinking and mass spectrometry to clarify interactions of CaM with nNOS. Specifically, MS-cleavable bifunctional crosslinker disuccinimidyl dibutyric urea was used to identify thirteen unique crosslinks between CaM and nNOS as well as 61 crosslinks within the nNOS. The crosslinks provided evidence for CaM interaction with the oxygenase and reductase domain residues as well as interactions of the FMN domain with the oxygenase dimer. Cryo-EM studies, which gave a high-resolution model of the oxygenase domain, along with crosslink-guided docking provided a model of nNOS that brings the FMN within 15 Å of the heme in support for a more compact conformation than previously observed. These studies also point to the utility of covalent crosslinking and mass spectrometry in capturing transient dynamic conformations that may not be captured by hydrogen-deuterium exchange and mass spectrometry experiments.
神经元型一氧化氮合酶(nNOS)是一种同二聚体细胞色素P450样酶,在NADPH和分子氧存在的情况下催化L-精氨酸转化为一氧化氮。钙调蛋白(CaM)与含FAD/FMN的还原酶结构域和含血红素的加氧酶结构域之间的连接区域结合,是电子转移反应、血红素还原和一氧化氮合成所必需的。由于还原酶结构域的动态性质以及现有全长结构的低分辨率,血红素还原过程中与CaM结合的活性复合物的确切构象仍未得到解决。有趣的是,氢-氘交换和质谱研究揭示了iNOS的FMN结构域和CaM与加氧酶结构域之间的相互作用,但nNOS没有。这一发现促使我们利用共价交联和质谱来阐明CaM与nNOS之间的相互作用。具体而言,使用可被质谱裂解的双功能交联剂二琥珀酰亚胺二丁酸脲来鉴定CaM与nNOS之间的13个独特交联以及nNOS内部的61个交联。这些交联为CaM与加氧酶和还原酶结构域残基之间的相互作用以及FMN结构域与加氧酶二聚体之间的相互作用提供了证据。低温电子显微镜研究给出了加氧酶结构域的高分辨率模型,结合交联引导对接提供了一个nNOS模型,该模型使FMN与血红素的距离在15埃以内,支持了比以前观察到的更紧凑的构象。这些研究还指出了共价交联和质谱在捕获氢-氘交换和质谱实验可能无法捕获的瞬态动态构象方面的实用性。