Suppr超能文献

特发性肺纤维化患者肺高血压无创预测工具的建立和验证:模型 FORD 的演进。

Derivation and validation of a noninvasive prediction tool to identify pulmonary hypertension in patients with IPF: Evolution of the model FORD.

机构信息

Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia.

Department of Pulmonary and Critical Care, Walter Reed National Military Medical Center, Bethesda, Maryland.

出版信息

J Heart Lung Transplant. 2024 Apr;43(4):547-553. doi: 10.1016/j.healun.2023.11.005. Epub 2023 Nov 17.

Abstract

BACKGROUND

The administration of inhaled prostanoids to patients with pulmonary hypertension (PH) related to idiopathic pulmonary fibrosis (IPF) and other fibrotic lung diseases improves functional outcomes. Selection of patients with IPF at risk for concomitant PH to undergo right heart catheterization (RHC) remains challenging. We sought to develop a clinical prediction tool based on common noninvasive parameters to identify PH in patients with IPF.

METHODS

A prediction model based on noninvasive parameters was derived from patients enrolled in the ARTEMIS-IPF randomized, placebo-controlled clinical trial. Predictor variables were tested for association with the presence of PH diagnosed based on RHC. The derived multivariable logistic regression model and associated point-score index were then externally validated in a real-world cohort of patients with IPF.

RESULTS

Of the 481 patients included in the ARTEMIS-IPF study, 9.8% (N = 47) were diagnosed with PH related to IPF. Four variables were associated with PH and were included in the final model: forced vital capacity/diffusing capacity for carbon monoxide ratio (F), oxygen saturation nadir during 6-minute walk test (6MWT) (O), race (R), and distance ambulated during 6MWT (D). A model containing continuous predictors (FORD calculator) and a simple point-score system (FORD index) performed similarly well in the derivation cohort (area under the curve [AUC]: 0.75 and 0.75, respectively) and validation cohort (AUC: 0.69 and 0.69, respectively).

CONCLUSIONS

The FORD models are simple, validated tools incorporating noninvasive parameters that can be applied to identify patients at risk of PH related to IPF who may benefit from invasive testing.

摘要

背景

向特发性肺纤维化(IPF)和其他肺纤维化疾病相关的肺动脉高压(PH)患者给予吸入前列环素可改善功能结局。选择有并发 PH 风险的 IPF 患者进行右心导管检查(RHC)仍然具有挑战性。我们试图开发一种基于常见无创参数的临床预测工具,以识别 IPF 患者中的 PH。

方法

从参与 ARTEMIS-IPF 随机、安慰剂对照临床试验的患者中得出基于无创参数的预测模型。检验预测变量与根据 RHC 诊断的 PH 存在的相关性。然后,在 IPF 患者的真实世界队列中对得出的多变量逻辑回归模型和相关评分指数进行外部验证。

结果

在 ARTEMIS-IPF 研究中纳入的 481 例患者中,9.8%(N=47)被诊断为与 IPF 相关的 PH。有 4 个变量与 PH 相关,并包含在最终模型中:用力肺活量/一氧化碳弥散量比值(F)、6 分钟步行试验(6MWT)期间氧饱和度最低点(O)、种族(R)和 6MWT 期间的步行距离(D)。包含连续预测因子的模型(FORD 计算器)和简单评分系统(FORD 指数)在推导队列中表现相当(曲线下面积[AUC]:分别为 0.75 和 0.75)和验证队列(AUC:分别为 0.69 和 0.69)。

结论

FORD 模型简单,验证有效,包含可用于识别有并发 PH 风险的 IPF 患者的无创参数,这些患者可能受益于侵入性检查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验