Suppr超能文献

光系统I中光致电子自旋量子比特对态的相干性

Coherences of Photoinduced Electron Spin Qubit Pair States in Photosystem I.

作者信息

Bindra Jasleen K, Niklas Jens, Jeong Yeonjun, Jasper Ahren W, Kretzschmar Moritz, Kern Jan, Utschig Lisa M, Poluektov Oleg G

机构信息

Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

J Phys Chem B. 2023 Nov 30;127(47):10108-10117. doi: 10.1021/acs.jpcb.3c06658. Epub 2023 Nov 19.

Abstract

This publication presents the first comprehensive experimental study of electron spin coherences in photosynthetic reaction center proteins, specifically focusing on photosystem I (PSI). The ultrafast electron transfer in PSI generates spin-correlated radical pairs (SCRPs), which are entangled spin pairs formed in well-defined spin states (Bell states). Since their discovery in our group in the 1980s, SCRPs have been extensively used to enhance our understanding of structure-function relationships in photosynthetic proteins. More recently, SCRPs have been utilized as tools for quantum sensing. Electron spin decoherence poses a significant challenge in realizing practical applications of electron spin qubits, particularly the creation of quantum entanglement between multiple electron spins. This work is focused on the systematic characterization of decoherence in SCRPs of PSI. These decoherence times were measured as electron spin echo decay times, termed phase memory times (), at various temperatures. Decoherence was recorded on both transient SCRP states PA and thermalized states. Our study reveals that exhibits minimal dependence on the biological species, biochemical treatment, and paramagnetic species. The analysis indicates that nuclear spin diffusion and instantaneous diffusion mechanisms alone cannot explain the observed decoherence. As a plausible explanation we discuss the assumption that the low-temperature dynamics of methyl groups in the protein surrounding the unpaired electron spin centers is the main factor governing the loss of the spin coherence in PSI.

摘要

本出版物展示了对光合反应中心蛋白中电子自旋相干性的首次全面实验研究,特别聚焦于光系统I(PSI)。PSI中的超快电子转移产生自旋相关自由基对(SCRP),它们是在明确的自旋态(贝尔态)中形成的纠缠自旋对。自20世纪80年代在我们团队中发现以来,SCRP已被广泛用于增进我们对光合蛋白结构 - 功能关系的理解。最近,SCRP已被用作量子传感工具。电子自旋退相干在实现电子自旋量子比特的实际应用中构成了重大挑战,特别是在多个电子自旋之间创建量子纠缠。这项工作专注于PSI的SCRP中退相干的系统表征。这些退相干时间在不同温度下作为电子自旋回波衰减时间进行测量,称为相位记忆时间()。在瞬态SCRP态PA和热化态上都记录了退相干。我们的研究表明,对生物物种、生化处理和顺磁物种的依赖性最小。分析表明,仅核自旋扩散和瞬时扩散机制无法解释观察到的退相干。作为一个合理的解释,我们讨论了这样一种假设,即围绕未配对电子自旋中心的蛋白质中甲基的低温动力学是控制PSI中自旋相干性丧失的主要因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验