Université Gustave Eiffel, ESYCOM CNRS UMR 9007, Noisy-le-Grand ESIEE Paris, Noisy-le-Grand 93162, France.
Si-Ware Systems, 3 Khalid Ibn Al-Waleed St., Heliopolis, Cairo 11361, Egypt.
Anal Chem. 2023 Dec 5;95(48):17826-17833. doi: 10.1021/acs.analchem.3c03919. Epub 2023 Nov 20.
Populations of nearly identical chemical and biological microparticles include the synthetic microbeads used in cosmetic, biomedical, agri-food, and pharmaceutical industries as well as the class of living microorganisms such as yeast, pollen, and biological cells. Herein, we identify simultaneously the size and chemical nature of spherical microparticle populations with diameters larger than 1 μm. Our analysis relies on the extraction of both physical and chemical signatures from the same optical spectrum recorded using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy. These signatures are the spectral resonances caused by the microparticles, which depend on their size and the absorption peaks revealing their chemical nature. We validate the method first on separated and mixed groups of spherical microplastic particles of two different diameters, where the method is used to calculate the diameter of the microspherical particles. Then, we apply the method to correctly identify and measure the diameter of yeast cells. Theoretical simulations to help in understanding the effect of size distribution and dispersion support our results.
近相同化学和生物的微粒子群体包括了在化妆品、生物医学、农业食品和制药行业中使用的合成微珠,以及酵母、花粉和生物细胞等微生物种类。在这里,我们同时识别出了直径大于 1 微米的球形微粒子群体的大小和化学性质。我们的分析依赖于从使用衰减全反射(ATR)-傅里叶变换红外(FTIR)光谱记录的同一光学光谱中提取物理和化学特征。这些特征是由微粒子引起的光谱共振,它们取决于微粒子的大小和揭示其化学性质的吸收峰。我们首先在两种不同直径的分离和混合的球形微塑料粒子群上验证了该方法,其中该方法用于计算微球形粒子的直径。然后,我们将该方法应用于正确识别和测量酵母细胞的直径。帮助理解尺寸分布和分散影响的理论模拟支持我们的结果。