Suppr超能文献

基于卷积神经网络预测分子亚型的乳腺动态对比增强 MRI 药代动力学参数的高效估算。

Efficient estimation of pharmacokinetic parameters from breast dynamic contrast-enhanced MRI based on a convolutional neural network for predicting molecular subtypes.

机构信息

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.

School of Computer and Information, Anqing Normal University, Anqing, 246133, People's Republic of China.

出版信息

Phys Med Biol. 2023 Dec 4;68(24). doi: 10.1088/1361-6560/ad0e39.

Abstract

. Tracer kinetic models allow for estimating pharmacokinetic (PK) parameters, which are related to pathological characteristics, from breast dynamic contrast-enhanced magnetic resonance imaging. However, existing tracer kinetic models subject to inaccuracy are time-consuming for PK parameters estimation. This study aimed to accurately and efficiently estimate PK parameters for predicting molecular subtypes based on convolutional neural network (CNN).. A CNN integrating global and local features (GL-CNN) was trained using synthetic data where known PK parameters map was used as the ground truth, and subsequently used to directly estimate PK parameters (volume transfer constantand flux rate constant) map. The accuracy assessed by the peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and concordance correlation coefficient (CCC) was compared between the GL-CNN and Tofts-based PK parameters in synthetic data. Radiomic features were calculated from the PK parameters map in 208 breast tumors. A random forest classifier was constructed to predict molecular subtypes using a discovery cohort (= 144). The diagnostic performance evaluated on a validation cohort (= 64) using the area under the receiver operating characteristic curve (AUC) was compared between the GL-CNN and Tofts-based PK parameters.. The average PSNR (48.8884), SSIM (0.9995), and CCC (0.9995) between the GL-CNN-basedmap and ground truth were significantly higher than those between the Tofts-basedmap and ground truth. The GL-CNN-basedobtained significantly better diagnostic performance (AUCs = 0.7658 and 0.8528) than the Tofts-basedfor luminal B and HER2 tumors. The GL-CNN method accelerated the computation by speed approximately 79 times compared to the Tofts method for the whole breast of all patients.. Our results indicate that the GL-CNN method can be used to accurately and efficiently estimate PK parameters for predicting molecular subtypes.

摘要

示踪剂动力学模型允许从乳腺动态对比增强磁共振成像中估计与病理特征相关的药代动力学 (PK) 参数。然而,现有的示踪剂动力学模型由于准确性差,因此在估计 PK 参数时耗时较长。本研究旨在基于卷积神经网络 (CNN) 准确高效地估计 PK 参数以预测分子亚型。使用已知 PK 参数图作为真实值的合成数据训练了一种集成全局和局部特征的 CNN (GL-CNN),并随后用于直接估计 PK 参数(容积转移常数和通量速率常数)图。通过峰值信噪比 (PSNR)、结构相似性 (SSIM) 和一致性相关系数 (CCC) 评估 GL-CNN 和基于 Tofts 的 PK 参数在合成数据中的准确性。从 208 个乳腺肿瘤的 PK 参数图中计算了放射组学特征。使用随机森林分类器构建了一个使用发现队列 (= 144) 预测分子亚型的模型。使用接收器工作特征曲线下的面积 (AUC) 在验证队列 (= 64) 上比较了 GL-CNN 和基于 Tofts 的 PK 参数之间的诊断性能。GL-CNN 基于图与真实值之间的平均 PSNR(48.8884)、SSIM(0.9995)和 CCC(0.9995)显着高于基于 Tofts 的图与真实值之间的平均 PSNR。GL-CNN 基于获得的诊断性能明显优于基于 Tofts 的(AUCs = 0.7658 和 0.8528),用于预测腔 B 和 HER2 肿瘤。与 Tofts 方法相比,GL-CNN 方法可以加速计算速度,对于所有患者的整个乳房,速度大约快 79 倍。

我们的研究结果表明,GL-CNN 方法可用于准确高效地估计 PK 参数以预测分子亚型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验