Suppr超能文献

随机森林方法提高支流营养负荷估算的精度。

A random forest approach to improve estimates of tributary nutrient loading.

机构信息

Vermont Department of Environmental Conservation, 1 National Life Drive, Montpelier, VT 05 USA.

出版信息

Water Res. 2024 Jan 1;248:120876. doi: 10.1016/j.watres.2023.120876. Epub 2023 Nov 15.

Abstract

Estimating constituent loads from discrete water quality samples coupled with stream discharge measurements is critical for management of freshwater resources. Nutrient loads calculated based on discharge-concentration relationships form the basis of government nutrient load targets and scientific studies of the response of receiving waters to external loads. In this study, a new model is developed using random forests and applied to estimate concentrations and loads of total phosphorus, dissolved phosphorus, total nitrogen, and chloride, using data from 17 tributaries to Lake Champlain monitored from 1992 to 2021. I benchmark this model against one of the most widespread models currently used to estimate nutrient loads, Weighted Regressions on Time, Discharge, and Season (WRTDS). The random forest model outperformed both the base WRTDS model and an extension of the WRTDS model using Kalman filtering in the great majority of cases, likely due to the inclusion of rate-of-change in discharge and antecedent discharge over different leading windows as predictors, and to the flexibility of the random forest to model predictor-response relationships. The random forest also had useful visualization capabilities which provided important process insights. WRTDS remains a useful model for many applications, but this study represents a promising new approach for load estimation which can be applied easily to existing datasets, and which is easy to customize for different applications.

摘要

从离散水质样本和流量测量中估算组成负荷对于淡水资源管理至关重要。基于排放-浓度关系计算的养分负荷构成了政府养分负荷目标和受纳水体对外负荷响应的科学研究的基础。在这项研究中,使用随机森林开发了一种新模型,并将其应用于估算 1992 年至 2021 年监测的 17 条流入尚普兰湖的支流的总磷、溶解磷、总氮和氯化物的浓度和负荷。我将该模型与目前最广泛用于估算养分负荷的模型之一——时间、流量和季节加权回归(WRTDS)进行了基准测试。在大多数情况下,随机森林模型都优于基本的 WRTDS 模型和使用卡尔曼滤波扩展的 WRTDS 模型,这可能是由于将排放率和不同前导窗口的前期排放纳入预测因子,以及随机森林灵活建模预测因子-响应关系所致。随机森林还具有有用的可视化功能,提供了重要的过程见解。WRTDS 仍然是许多应用的有用模型,但本研究代表了一种有前途的新负荷估算方法,该方法可以轻松应用于现有数据集,并可以针对不同的应用进行定制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验