Suppr超能文献

零价铁和磁铁矿在过渡温度(45°C)和不同有机负荷率下对食物垃圾厌氧产甲烷的协同增强作用。

Co-enhancing effects of zero valent iron and magnetite on anaerobic methanogenesis of food waste at transition temperature (45 °C) and various organic loading rates.

机构信息

College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China.

College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China.

出版信息

Waste Manag. 2024 Jan 1;173:87-98. doi: 10.1016/j.wasman.2023.11.017. Epub 2023 Nov 18.

Abstract

Deoiling of food waste (FW) after hydrothermal pretreatment occurs at high temperatures, and more energy is required for substrate cooling before the anaerobic digestion (AD) process. AD at the transition temperature (for example 45 °C) is good for energy saving and carbon emission reducing when treating deoiling FW. However, the metabolic activity of methanogens must increase at the transition temperatures. This study proposes the use of zero-valent iron (Fe) and magnetite (FeO) to boost CH yield from deoiling FW. The results showed a co-enhancing effect on CH yield upgradation when using Fe and FeO simultaneously, and the highest CH yield reached 536.23 mLCH/gVS, which was 67.5 % higher than that of Fe alone (320.14 mLCH/gVS). In addition, a high organic loading was favorable for increasing the CH yield from deoiling FW. Microbial diversity analysis suggested that the dominant methanogenic pathway at 45 °C was hydrogenotrophic methanogenesis. Herein, a potential metabolic pathway analysis revealed that the co-enhancing effects of Fe and FeO enhanced syntrophic methanogenesis and possibly boosted electron transfer efficiency.

摘要

对经过水热预处理的食物废物(FW)进行除油操作在高温下进行,并且在进行厌氧消化(AD)工艺之前,需要更多的能量来冷却底物。当处理除油 FW 时,在过渡温度(例如 45°C)下进行 AD 有利于节能和减少碳排放。然而,产甲烷菌的代谢活性必须在过渡温度下增加。本研究提出使用零价铁(Fe)和磁铁矿(FeO)来提高从除油 FW 中产生的 CH 产量。结果表明,当同时使用 Fe 和 FeO 时,对 CH 产量升级具有协同增强作用,最高 CH 产量达到 536.23 mLCH/gVS,比单独使用 Fe(320.14 mLCH/gVS)提高了 67.5%。此外,高有机负荷有利于提高从除油 FW 中产生的 CH 产量。微生物多样性分析表明,45°C 下主要的产甲烷途径是氢营养型产甲烷作用。在此,潜在的代谢途径分析表明,Fe 和 FeO 的协同增强作用促进了共代谢产甲烷作用,并可能提高了电子传递效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验