Rubel Camille Z, Cao Yilin, El-Hayek Ewing Tamara, Laudadio Gabriele, Beutner Gregory L, Wisniewski Steven R, Wu Xiangyu, Baran Phil S, Vantourout Julien C, Engle Keary M
Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France.
Angew Chem Int Ed Engl. 2024 Jan 8;63(2):e202311557. doi: 10.1002/anie.202311557. Epub 2023 Dec 11.
Over the last fifty years, the use of nickel catalysts for facilitating organic transformations has skyrocketed. Nickel(0) sources act as useful precatalysts because they can enter a catalytic cycle through ligand exchange, without needing to undergo additional elementary steps. However, most Ni(0) precatalysts are synthesized with stoichiometric aluminum-hydride reductants, pyrophoric reagents that are not atom-economical and must be used at cryogenic temperatures. Here, we demonstrate that Ni(II) salts can be reduced on preparative scale using electrolysis to yield a variety of Ni(0) and Ni(II) complexes that are widely used as precatalysts in organic synthesis, including bis(1,5-cyclooctadiene)nickel(0) [Ni(COD) ]. This method overcomes the reproducibility issues of previously reported methods by standardizing the procedure, such that it can be performed anywhere in a robust manner. It can be transitioned to large scale through an electrochemical recirculating flow process and extended to an in situ reduction protocol to generate catalytic amounts of Ni(0) for organic transformations. We anticipate that this work will accelerate adoption of preparative electrochemistry for the synthesis of low-valent organometallic complexes in academia and industry.
在过去的五十年里,用于促进有机转化的镍催化剂的使用量急剧增加。零价镍源作为有用的预催化剂,因为它们可以通过配体交换进入催化循环,而无需经历额外的基本步骤。然而,大多数零价镍预催化剂是用化学计量的氢化铝还原剂合成的,这些还原剂是自燃试剂,原子经济性差,且必须在低温下使用。在这里,我们证明了镍(II)盐可以通过电解在制备规模上被还原,以产生多种零价镍和镍(II)配合物,这些配合物在有机合成中广泛用作预催化剂,包括双(1,5-环辛二烯)镍(0) [Ni(COD)₂]。该方法通过标准化程序克服了先前报道方法的可重复性问题,使其能够在任何地方以稳健的方式进行。它可以通过电化学循环流动过程扩大到大规模,并扩展到原位还原方案,以产生用于有机转化的催化量的零价镍。我们预计这项工作将加速学术界和工业界采用制备电化学来合成低价有机金属配合物。