Suppr超能文献

基于具有动态路由的掩码肽变压器的血脑屏障穿透肽预测模型。

A prediction model for blood-brain barrier penetrating peptides based on masked peptide transformers with dynamic routing.

作者信息

Ma Chunwei, Wolfinger Russ

机构信息

JMP Statistical Discovery, LLC, Cary, 27513, NC, USA.

Department of Computer Science and Engineering, University at Buffalo, Buffalo, 14260, NY, USA.

出版信息

Brief Bioinform. 2023 Sep 22;24(6). doi: 10.1093/bib/bbad399.

Abstract

Blood-brain barrier penetrating peptides (BBBPs) are short peptide sequences that possess the ability to traverse the selective blood-brain interface, making them valuable drug candidates or carriers for various payloads. However, the in vivo or in vitro validation of BBBPs is resource-intensive and time-consuming, driving the need for accurate in silico prediction methods. Unfortunately, the scarcity of experimentally validated BBBPs hinders the efficacy of current machine-learning approaches in generating reliable predictions. In this paper, we present DeepB3P3, a novel framework for BBBPs prediction. Our contribution encompasses four key aspects. Firstly, we propose a novel deep learning model consisting of a transformer encoder layer, a convolutional network backbone, and a capsule network classification head. This integrated architecture effectively learns representative features from peptide sequences. Secondly, we introduce masked peptides as a powerful data augmentation technique to compensate for small training set sizes in BBBP prediction. Thirdly, we develop a novel threshold-tuning method to handle imbalanced data by approximating the optimal decision threshold using the training set. Lastly, DeepB3P3 provides an accurate estimation of the uncertainty level associated with each prediction. Through extensive experiments, we demonstrate that DeepB3P3 achieves state-of-the-art accuracy of up to 98.31% on a benchmarking dataset, solidifying its potential as a promising computational tool for the prediction and discovery of BBBPs.

摘要

血脑屏障穿透肽(BBBPs)是具有穿越选择性血脑界面能力的短肽序列,这使其成为各种有效载荷的有价值的候选药物或载体。然而,对BBBPs进行体内或体外验证需要大量资源且耗时,这促使人们需要准确的计算机预测方法。不幸的是,经过实验验证的BBBPs数量稀少,阻碍了当前机器学习方法在生成可靠预测方面的有效性。在本文中,我们提出了DeepB3P3,这是一种用于BBBPs预测的新型框架。我们的贡献包括四个关键方面。首先,我们提出了一种新型深度学习模型,该模型由一个变压器编码器层、一个卷积网络主干和一个胶囊网络分类头组成。这种集成架构有效地从肽序列中学习代表性特征。其次,我们引入掩码肽作为一种强大的数据增强技术,以弥补BBBPs预测中训练集规模较小的问题。第三,我们开发了一种新型阈值调整方法,通过使用训练集近似最佳决策阈值来处理不平衡数据。最后,DeepB3P3提供了与每个预测相关的不确定性水平的准确估计。通过广泛的实验,我们证明DeepB3P3在一个基准数据集上实现了高达98.31%的最新准确率,巩固了其作为一种有前途的用于预测和发现BBBPs的计算工具的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验