Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel.
Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
Nat Commun. 2023 Nov 20;14(1):7542. doi: 10.1038/s41467-023-43310-2.
Circulating cell-free DNA (cfDNA) fragments are a biological analyte with extensive utility in diagnostic medicine. Understanding the source of cfDNA and mechanisms of release is crucial for designing and interpreting cfDNA-based liquid biopsy assays. Using cell type-specific methylation markers as well as genome-wide methylation analysis, we determine that megakaryocytes, the precursors of anuclear platelets, are major contributors to cfDNA (~26%), while erythroblasts contribute 1-4% of cfDNA in healthy individuals. Surprisingly, we discover that platelets contain genomic DNA fragments originating in megakaryocytes, contrary to the general understanding that platelets lack genomic DNA. Megakaryocyte-derived cfDNA is increased in pathologies involving increased platelet production (Essential Thrombocythemia, Idiopathic Thrombocytopenic Purpura) and decreased upon reduced platelet production due to chemotherapy-induced bone marrow suppression. Similarly, erythroblast cfDNA is reflective of erythrocyte production and is elevated in patients with thalassemia. Megakaryocyte- and erythroblast-specific DNA methylation patterns can thus serve as biomarkers for pathologies involving increased or decreased thrombopoiesis and erythropoiesis, which can aid in determining the etiology of aberrant levels of erythrocytes and platelets.
循环无细胞 DNA (cfDNA) 片段是一种具有广泛应用于诊断医学的生物分析物。了解 cfDNA 的来源和释放机制对于设计和解释基于 cfDNA 的液体活检检测至关重要。我们使用细胞类型特异性甲基化标记物以及全基因组甲基化分析,确定巨核细胞(无核血小板的前体)是 cfDNA 的主要来源(约 26%),而红细胞在健康个体中贡献 1-4%的 cfDNA。令人惊讶的是,我们发现血小板中含有源自巨核细胞的基因组 DNA 片段,这与血小板缺乏基因组 DNA 的普遍理解相反。在涉及血小板生成增加的病理情况下(特发性血小板增多症、特发性血小板减少性紫癜),巨核细胞衍生的 cfDNA 增加,而由于化疗引起的骨髓抑制导致血小板生成减少时,cfDNA 减少。类似地,红细胞 cfDNA 反映了红细胞的生成,在患有地中海贫血的患者中升高。因此,巨核细胞和红细胞特异性 DNA 甲基化模式可以作为涉及增加或减少血小板生成和红细胞生成的病理的生物标志物,这有助于确定异常水平的红细胞和血小板的病因。