Suppr超能文献

基于 Swin Transformer 方法的多相岩石 X 射线断层扫描数据自动分割框架。

Automatic segmentation framework of X-Ray tomography data for multi-phase rock using Swin Transformer approach.

机构信息

College of Mechanical Engineering, Zhejiang Sci-tech University Hangzhou, Xiasha, 310018, Zhejiang, China.

Center Sinohydro Bureau 12, Co., LTD., Hangzhou, China.

出版信息

Sci Data. 2023 Nov 20;10(1):812. doi: 10.1038/s41597-023-02734-7.

Abstract

A thorough understanding of the impact of the 3D meso-structure on damage and failure patterns is essential for revealing the failure conditions of composite rock materials such as coal, concrete, marble, and others. This paper presents a 3D XCT dataset of coal rock with 1372 slices (each slice contains 1720 × 1771 pixels in x × y direction). The 3D XCT datasets were obtained by MicroXMT-400 using the 225/320kv Nikon Metris custom bay. The raw datasets were processed by an automatic semantic segmentation method based on the Swin Transformer (Swin-T) architecture, which aims to overcome the issue of large errors and low efficiency for traditional methods. The hybrid loss function proposed can also effectively mitigate the influence of large volume features in the training process by incorporating modulation terms into the cross entropy loss, thereby enhancing the accuracy of segmentation for small volume features. This dataset will be available to the related researchers for further finite element analysis or microstructural statistical analysis, involving complex physical and mechanical behaviors at different scales.

摘要

深入了解 3D 细观结构对损伤和破坏模式的影响,对于揭示煤、混凝土、大理石等复合岩石材料的破坏条件至关重要。本文提供了一个具有 1372 个切片的煤岩 XCT 三维数据集(每个切片在 x 和 y 方向上包含 1720×1771 像素)。这些 XCT 三维数据集是使用尼康 Metris 定制盒的 MicroXMT-400 通过 225/320kv 获得的。原始数据集通过基于 Swin Transformer(Swin-T)架构的自动语义分割方法进行处理,旨在克服传统方法误差大、效率低的问题。所提出的混合损失函数还可以通过将调制项纳入交叉熵损失来有效减轻训练过程中大容量特征的影响,从而提高小容量特征的分割准确性。该数据集将可供相关研究人员进一步进行有限元分析或微观结构统计分析,涉及不同尺度下的复杂物理和力学行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf77/10661918/4fb3d26b1aac/41597_2023_2734_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验