Suppr超能文献

通过改良的肽组学技术探索新型血管生成素-EIPs:深度学习策略能否成为预测肽结构和功能的核心突破?

Exploring novel ANGICon-EIPs through ameliorated peptidomics techniques: Can deep learning strategies as a core breakthrough in peptide structure and function prediction?

机构信息

School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.

School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

出版信息

Food Res Int. 2023 Dec;174(Pt 1):113640. doi: 10.1016/j.foodres.2023.113640. Epub 2023 Oct 27.

Abstract

Dairy-derived angiotensin-I-converting enzyme inhibitory peptides (ANGICon-EIPs) have been regarded as a relatively safe supplementary diet-therapy strategy for individuals with hypertension, and short-chain peptides may have more relevant antihypertensive benefits due to their direct intestinal absorption. Our previous explorations have confirmed that endogenous goat milk short-chain peptides are also an essential source of ANGICon-EIPs. Nonetheless, there are limited explorations on endogenous ANGICon-EIPs owing to the limitations of the extraction and enrichment of endogenous peptides, currently. This review outlined ameliorated pre-treatment strategies, data acquisition methods, and tools for the prediction of peptide structure and function, aiming to provide creative ideas for discovering novel ANGICon-EIPs. Currently, deep learning-based peptide structure and function prediction algorithms have achieved significant advancements. The convolutional neural network (CNN) and peptide sequence-based multi-label deep learning approach for determining the multi-functionalities of bioactive peptides (MLBP) can predict multiple peptide functions with absolute true value and accuracy of 0.699 and 0.708, respectively. Utilizing peptide sequence input, torsion angles, and inter-residue distance to train neural networks, APPTEST predicted the average backbone root mean square deviation (RMSD) value of peptide (5-40 aa) structures as low as 1.96 Å. Overall, with the exploration of more neural network architectures, deep learning could be considered a critical research tool to reduce the cost and improve the efficiency of identifying novel endogenous ANGICon-EIPs.

摘要

乳源血管紧张素转换酶抑制肽(ANGICon-EIPs)已被视为高血压患者相对安全的补充饮食疗法策略,由于短肽可直接被肠道吸收,因此可能具有更相关的降压益处。我们之前的探索已经证实,内源性羊奶短肽也是 ANGICON-EIP 的重要来源。然而,由于内源性肽的提取和富集存在局限性,目前对内源性 ANGICON-EIP 的研究还很有限。本综述概述了改良的预处理策略、数据采集方法和用于预测肽结构和功能的工具,旨在为发现新型 ANGICON-EIP 提供创造性思路。目前,基于深度学习的肽结构和功能预测算法已经取得了显著进展。卷积神经网络(CNN)和基于肽序列的生物活性肽多功能性确定的多标签深度学习方法(MLBP)可以分别以绝对真实值和 0.699 和 0.708 的准确率预测多种肽功能。利用肽序列输入、扭转角和残基间距离来训练神经网络,APPTTEST 预测肽(5-40 个氨基酸)结构的平均主链均方根偏差(RMSD)值低至 1.96Å。总的来说,随着更多神经网络架构的探索,深度学习可以被认为是降低成本和提高识别新型内源性 ANGICON-EIP 效率的关键研究工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验