Shi Wenchao, Song Zhenjun, Sun Weiyi, Liu Yu, Jiang Yalong, Li Qi, An Qinyou
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, P. R. China.
Small. 2024 Apr;20(14):e2308282. doi: 10.1002/smll.202308282. Epub 2023 Nov 21.
Developing low-cost and long-cycling-life aqueous zinc (Zn) ion capacitors (AZICs) for large-scale electrochemical energy storage still faces the challenges of dendritic Zn deposition and interfacial side reactions. Here, an interface engineering strategy utilizing a dibenzenesulfonimide (BBI) additive is employed to enhance the stability of the Zn metal anode/electrolyte interface. The first-principles calculation results demonstrate that BBI anions can be chemically adsorbed on Zn metal. Meanwhile, the experimental results confirm that the BBI-Zn interfacial layer converts the original water-richelectric double layer (EDL) into a water-poor EDL, effectively inhibiting the water related parasitic reaction at the electrode/electrolyte interface. In addition, the BBI-Zn interfacial layer introduces an additional Zn ions (Zn) migration energy barrier, increasing the Zn de-solvation activation energy, consequently raising the Zn nucleation overpotential, and thus achieving the compact and uniform Zn deposition behavior. Furthermore, the solid electrolyte interphase (SEI) layer derived from the BBI-Zn interfacial layer during cycling can further maintain the interfacial stability of the Zn anode. Owing to the above favorable features, the assembled AZIC exhibits an ultra-long cycling life of over 300 000 cycles based on the additive engineering strategy, which shows application prospects in high-performance AZICs.
开发用于大规模电化学储能的低成本、长循环寿命的水系锌(Zn)离子电容器(AZIC)仍面临着锌枝晶沉积和界面副反应的挑战。在此,采用一种利用二苯磺酰亚胺(BBI)添加剂的界面工程策略来增强锌金属阳极/电解质界面的稳定性。第一性原理计算结果表明,BBI阴离子可以化学吸附在锌金属上。同时,实验结果证实,BBI-Zn界面层将原来富含水的双电层(EDL)转变为贫水的EDL,有效抑制了电极/电解质界面处与水相关的寄生反应。此外,BBI-Zn界面层引入了额外的锌离子(Zn)迁移能垒,增加了锌去溶剂化活化能,从而提高了锌成核过电位,进而实现了致密且均匀的锌沉积行为。此外,循环过程中由BBI-Zn界面层衍生的固体电解质界面(SEI)层可以进一步维持锌阳极的界面稳定性。由于上述有利特性,基于添加剂工程策略组装的AZIC表现出超过300000次循环的超长循环寿命,这在高性能AZIC中显示出应用前景。