Suppr超能文献

面向水系锌离子电池可控锌沉积和快速阳离子迁移的氟化界面工程

Fluorinated Interface Engineering toward Controllable Zinc Deposition and Rapid Cation Migration of Aqueous Zn-Ion Batteries.

作者信息

Feng Yuge, Wang Yaoda, Sun Lin, Zhang Kaiqiang, Liang Junchuan, Zhu Mengfei, Tie Zuoxiu, Jin Zhong

机构信息

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.

Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.

出版信息

Small. 2023 Sep;19(39):e2302650. doi: 10.1002/smll.202302650. Epub 2023 Jun 1.

Abstract

Metallic zinc (Zn) is a highly promising anode material for aqueous energy storage systems due to its low redox potential, high theoretical capacity, and low cost. However, rampant dendrites/by-products and torpid Zn transfer kinetics at electrode/electrolyte interface severely threaten the cycling stability, which deteriorate the electrochemical performance of Zn-ion batteries. Herein, an interfacial engineering strategy to construct alkaline earth fluoride modified metal Zn electrodes with long lifespan and high capacity retention is reported. The compact fluoride layer is revealed to guide uniform Zn stripping/plating and accelerate the transfer/diffusion of Zn via Maxwell-Wagner polarization. A series of in situ and ex situ spectroscopic studies verified that the fluoride layer can guide uniform Zn stripping/plating. Electrochemical kinetics analyses reveal that positive effect on the removal of Zn solvation sheath provided by fluoride layer. Meanwhile, this fluoride coating layer can act as a barrier between the Zn electrode and electrolyte, providing a high electrode overpotential toward hydrogen evolution reaction to hold back H evolution. Consequently, the fluoride-modified Zn anode exhibited a capacity retention of 88.2% after 4000 cycles under10 A g . This work opens up a new path to interface engineering for propelling the exploration of advanced rechargeable aqueous Zn-ion batteries.

摘要

金属锌(Zn)因其低氧化还原电位、高理论容量和低成本,是水系储能系统中极具潜力的负极材料。然而,电极/电解质界面处大量生长的枝晶/副产物以及迟缓的锌转移动力学严重威胁着循环稳定性,进而降低了锌离子电池的电化学性能。在此,报道了一种界面工程策略,用于构建具有长寿命和高容量保持率的碱土金属氟化物修饰金属锌电极。结果表明,致密的氟化物层可通过麦克斯韦-瓦格纳极化作用引导锌的均匀剥离/电镀,并加速锌的转移/扩散。一系列原位和非原位光谱研究证实,氟化物层能够引导锌的均匀剥离/电镀。电化学动力学分析表明,氟化物层对去除锌溶剂化鞘层具有积极作用。同时,这种氟化物涂层可作为锌电极与电解质之间的屏障,对析氢反应提供较高的电极过电位,从而抑制氢气析出。因此,氟化物修饰的锌负极在10 A g⁻¹ 电流密度下循环4000次后,容量保持率为88.2%。这项工作为推动先进的可充电水系锌离子电池的探索开辟了一条界面工程的新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验