文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过机器学习策略和实验验证的失巢凋亡模式在黑色素瘤中表现出明显的预后和免疫特征。

Anoikis patterns via machine learning strategy and experimental verification exhibit distinct prognostic and immune landscapes in melanoma.

机构信息

Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, China.

School of Life Sciences, Northwest University, Xi'an, 710069, China.

出版信息

Clin Transl Oncol. 2024 May;26(5):1170-1186. doi: 10.1007/s12094-023-03336-w. Epub 2023 Nov 21.


DOI:10.1007/s12094-023-03336-w
PMID:37989822
Abstract

BACKGROUND: Anoikis is a cell death programmed to eliminate dysfunctional or damaged cells induced by detachment from the extracellular matrix. Utilizing an anoikis-based risk stratification is anticipated to understand melanoma's prognostic and immune landscapes comprehensively. METHODS: Differential expression genes (DEGs) were analyzed between melanoma and normal skin tissues in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression data sets. Next, least absolute shrinkage and selection operator, support vector machine-recursive feature elimination algorithm, and univariate and multivariate Cox analyses on the 308 DEGs were performed to build the prognostic signature in the TCGA-melanoma data set. Finally, the signature was validated in GSE65904 and GSE22155 data sets. NOTCH3, PIK3R2, and SOD2 were validated in our clinical samples by immunohistochemistry. RESULTS: The prognostic model for melanoma patients was developed utilizing ten hub anoikis-related genes. The overall survival (OS) of patients in the high-risk subgroup, which was classified by the optimal cutoff value, was remarkably shorter in the TCGA-melanoma, GSE65904, and GSE22155 data sets. Low-risk patients exhibited low immune cell infiltration and high expression of immunophenoscores and immune checkpoints. They also demonstrated increased sensitivity to various drugs, including dasatinib and dabrafenib. NOTCH3, PIK3R2, and SOD2 were notably associated with OS by univariate Cox analysis in the GSE65904 data set. The clinical melanoma samples showed remarkably higher protein expressions of NOTCH3 (P = 0.003) and PIK3R2 (P = 0.009) than the para-melanoma samples, while the SOD2 protein expression remained unchanged. CONCLUSIONS: In this study, we successfully established a prognostic anoikis-connected signature using machine learning. This model may aid in evaluating patient prognosis, clinical characteristics, and immune treatment modalities for melanoma.

摘要

背景:细胞凋亡是一种程序性细胞死亡,旨在消除因与细胞外基质分离而导致的功能失调或受损细胞。利用基于细胞凋亡的风险分层,有望全面了解黑色素瘤的预后和免疫景观。

方法:在癌症基因组图谱(TCGA)和基因型-组织表达数据集分析黑色素瘤与正常皮肤组织之间的差异表达基因(DEGs)。接下来,对 308 个 DEGs 进行最小绝对收缩和选择算子、支持向量机递归特征消除算法、单变量和多变量 Cox 分析,以构建 TCGA 黑色素瘤数据集中的预后特征。最后,在 GSE65904 和 GSE22155 数据集中验证该特征。通过免疫组织化学验证 NOTCH3、PIK3R2 和 SOD2 在我们的临床样本中的表达。

结果:利用十个与细胞凋亡相关的核心基因构建了黑色素瘤患者的预后模型。根据最佳截断值分类的高危亚组患者的总生存期(OS)在 TCGA 黑色素瘤、GSE65904 和 GSE22155 数据集中明显缩短。低危患者的免疫细胞浸润水平较低,免疫表型评分和免疫检查点表达水平较高。他们还表现出对各种药物的敏感性增加,包括达沙替尼和达拉非尼。在 GSE65904 数据集中,NOTCH3、PIK3R2 和 SOD2 的单变量 Cox 分析显著与 OS 相关。临床黑色素瘤样本的 NOTCH3(P=0.003)和 PIK3R2(P=0.009)蛋白表达明显高于癌旁样本,而 SOD2 蛋白表达不变。

结论:本研究成功利用机器学习建立了预后相关的细胞凋亡连接特征模型。该模型有助于评估黑色素瘤患者的预后、临床特征和免疫治疗方式。

相似文献

[1]
Anoikis patterns via machine learning strategy and experimental verification exhibit distinct prognostic and immune landscapes in melanoma.

Clin Transl Oncol. 2024-5

[2]
Identification of hub anoikis-associated genes and risk signature in cutaneous melanoma.

Eur Rev Med Pharmacol Sci. 2023-6

[3]
A promising anoikis-related prognostic signature predicts prognosis of skin cutaneous melanoma.

J Cancer Res Clin Oncol. 2023-12

[4]
Development of a biomarker signature associated with anoikis to predict prognosis and immunotherapy response in melanoma.

Arch Dermatol Res. 2024-5-24

[5]
Comprehensive analysis and experimental verification of the mechanism of anoikis related genes in pancreatic cancer.

Heliyon. 2024-8-13

[6]
Identification and verification of a novel anoikis-related gene signature with prognostic significance in clear cell renal cell carcinoma.

J Cancer Res Clin Oncol. 2023-10

[7]
The fatty acid-related gene signature stratifies poor prognosis patients and characterizes TIME in cutaneous melanoma.

J Cancer Res Clin Oncol. 2024-1-27

[8]
Identification of anoikis related subtypes and construction of prognostic model in hepatocellular carcinoma.

Cell Mol Biol (Noisy-le-grand). 2023-9-30

[9]
A novel anoikis-related prognostic signature associated with prognosis and immune infiltration landscape in lung adenocarcinoma.

J Gene Med. 2024-2

[10]
Predicting the clinical outcome of melanoma using an immune-related gene pairs signature.

PLoS One. 2020-10-8

引用本文的文献

[1]
Integrating bioinformatics and machine learning to identify AhR-related gene signatures for prognosis and tumor microenvironment modulation in melanoma.

Front Immunol. 2025-1-6

本文引用的文献

[1]
Fibroblasts in cancer: Unity in heterogeneity.

Cell. 2023-4-13

[2]
Cancer-associated fibroblasts: The chief architect in the tumor microenvironment.

Front Cell Dev Biol. 2023-1-30

[3]
A novel risk model based on anoikis: Predicting prognosis and immune infiltration in cutaneous melanoma.

Front Pharmacol. 2023-1-16

[4]
An anoikis-based signature for predicting prognosis in hepatocellular carcinoma with machine learning.

Front Pharmacol. 2023-1-4

[5]
PIK3R2 predicts poor outcomes for patients with melanoma and contributes to the malignant progression via PI3K/AKT/NF-κB axis.

Clin Transl Oncol. 2023-5

[6]
A novel chemokine-based signature for prediction of prognosis and therapeutic response in glioma.

CNS Neurosci Ther. 2022-12

[7]
Bioinformatics evaluation of a novel angiogenesis related genes-based signature for predicting prognosis and therapeutic efficacy in patients with gastric cancer.

Am J Transl Res. 2022-7-15

[8]
Pan-cancer analysis on the role of PIK3R1 and PIK3R2 in human tumors.

Sci Rep. 2022-4-8

[9]
Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies.

Theranostics. 2022

[10]
Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives.

Mol Cancer. 2021-10-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索