Clifton Olivia E, Schwede Donna, Hogrefe Christian, Bash Jesse O, Bland Sam, Cheung Philip, Coyle Mhairi, Emberson Lisa, Flemming Johannes, Fredj Erick, Galmarini Stefano, Ganzeveld Laurens, Gazetas Orestis, Goded Ignacio, Holmes Christopher D, Horváth László, Huijnen Vincent, Li Qian, Makar Paul A, Mammarella Ivan, Manca Giovanni, Munger J William, Pérez-Camanyo Juan L, Pleim Jonathan, Ran Limei, Jose Roberto San, Silva Sam J, Staebler Ralf, Sun Shihan, Tai Amos P K, Tas Eran, Vesala Timo, Weidinger Tamás, Wu Zhiyong, Zhang Leiming
NASA Goddard Institute for Space Studies, New York, NY, USA.
Center for Climate Systems Research, Columbia Climate School, Columbia University in the City of New York, New York, NY, USA.
Atmos Chem Phys. 2023 Sep 6;23(17):9911-9961. doi: 10.5194/acp-23-9911-2023.
A primary sink of air pollutants and their precursors is dry deposition. Dry deposition estimates differ across chemical transport models, yet an understanding of the model spread is incomplete. Here, we introduce Activity 2 of the Air Quality Model Evaluation International Initiative Phase 4 (AQMEII4). We examine 18 dry deposition schemes from regional and global chemical transport models as well as standalone models used for impact assessments or process understanding. We configure the schemes as single-point models at eight Northern Hemisphere locations with observed ozone fluxes. Single-point models are driven by a common set of site-specific meteorological and environmental conditions. Five of eight sites have at least 3 years and up to 12 years of ozone fluxes. The interquartile range across models in multiyear mean ozone deposition velocities ranges from a factor of 1.2 to 1.9 annually across sites and tends to be highest during winter compared with summer. No model is within 50 % of observed multiyear averages across all sites and seasons, but some models perform well for some sites and seasons. For the first time, we demonstrate how contributions from depositional pathways vary across models. Models can disagree with respect to relative contributions from the pathways, even when they predict similar deposition velocities, or agree with respect to the relative contributions but predict different deposition velocities. Both stomatal and nonstomatal uptake contribute to the large model spread across sites. Our findings are the beginning of results from AQMEII4 Activity 2, which brings scientists who model air quality and dry deposition together with scientists who measure ozone fluxes to evaluate and improve dry deposition schemes in the chemical transport models used for research, planning, and regulatory purposes.
空气污染物及其前体的一个主要汇是干沉降。不同化学传输模型对干沉降的估计存在差异,但对模型差异的理解并不完整。在此,我们介绍了国际空气质量模型评估倡议第4阶段(AQMEII4)的活动2。我们研究了来自区域和全球化学传输模型以及用于影响评估或过程理解的独立模型的18种干沉降方案。我们将这些方案配置为在北半球8个有臭氧通量观测值的地点的单点模型。单点模型由一组共同的特定地点气象和环境条件驱动。8个地点中有5个地点有至少3年至12年的臭氧通量数据。多年平均臭氧沉降速度在各模型间的四分位距在各地点每年为1.2至1.9倍,且与夏季相比,冬季往往最高。没有一个模型在所有地点和季节的多年观测平均值的50%范围内,但有些模型在某些地点和季节表现良好。我们首次展示了不同模型中沉积途径的贡献是如何变化的。即使模型预测的沉降速度相似,它们在沉积途径的相对贡献方面也可能存在分歧;或者在相对贡献方面达成一致,但预测的沉降速度不同。气孔吸收和非气孔吸收都导致了各地点模型间的较大差异。我们的研究结果是AQMEII4活动2的初步成果,该活动将模拟空气质量和干沉降的科学家与测量臭氧通量的科学家聚集在一起,以评估和改进用于研究、规划和监管目的的化学传输模型中的干沉降方案。