Rahman Md Ashequr, Yu Zitong, Siegel Barry A, Jha Abhinav K
Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12467. doi: 10.1117/12.2655629. Epub 2023 Apr 3.
Deep-learning (DL)-based methods have shown significant promise in denoising myocardial perfusion SPECT images acquired at low dose. For clinical application of these methods, evaluation on clinical tasks is crucial. Typically, these methods are designed to minimize some fidelity-based criterion between the predicted denoised image and some reference normal-dose image. However, while promising, studies have shown that these methods may have limited impact on the performance of clinical tasks in SPECT. To address this issue, we use concepts from the literature on model observers and our understanding of the human visual system to propose a DL-based denoising approach designed to preserve observer-related information for detection tasks. The proposed method was objectively evaluated on the task of detecting perfusion defect in myocardial perfusion SPECT images using a retrospective study with anonymized clinical data. Our results demonstrate that the proposed method yields improved performance on this detection task compared to using low-dose images. The results show that by preserving task-specific information, DL may provide a mechanism to improve observer performance in low-dose myocardial perfusion SPECT.
基于深度学习(DL)的方法在低剂量采集的心肌灌注单光子发射计算机断层扫描(SPECT)图像去噪方面已显示出巨大潜力。对于这些方法的临床应用,在临床任务上的评估至关重要。通常,这些方法旨在最小化预测的去噪图像与某些参考正常剂量图像之间基于保真度的准则。然而,尽管很有前景,但研究表明这些方法对SPECT临床任务的性能影响可能有限。为了解决这个问题,我们借鉴模型观察者文献中的概念以及我们对人类视觉系统的理解,提出一种基于深度学习的去噪方法,旨在为检测任务保留与观察者相关的信息。使用匿名临床数据的回顾性研究,对所提出的方法在心肌灌注SPECT图像中检测灌注缺损的任务上进行了客观评估。我们的结果表明,与使用低剂量图像相比,所提出的方法在该检测任务上具有更好的性能。结果表明,通过保留特定任务信息,深度学习可能提供一种机制来提高低剂量心肌灌注SPECT中观察者的性能。