Metz C E, Herman B A, Shen J H
Department of Radiology, University of Chicago Medical Center, IL 60637-1470, USA.
Stat Med. 1998 May 15;17(9):1033-53. doi: 10.1002/(sici)1097-0258(19980515)17:9<1033::aid-sim784>3.0.co;2-z.
We show that truth-state runs in rank-ordered data constitute a natural categorization of continuously-distributed test results for maximum likelihood (ML) estimation of ROC curves. On this basis, we develop two new algorithms for fitting binormal ROC curves to continuously-distributed data: a true ML algorithm (LABROC4) and a quasi-ML algorithm (LABROC5) that requires substantially less computation with large data sets. Simulation studies indicate that both algorithms produce reliable estimates of the binormal ROC curve parameters a and b, the ROC-area index Az, and the standard errors of those estimates.
我们表明,在排序数据中的真实状态运行构成了对连续分布测试结果的自然分类,用于ROC曲线的最大似然(ML)估计。在此基础上,我们开发了两种新算法,用于将双正态ROC曲线拟合到连续分布数据:一种是真正的ML算法(LABROC4)和一种准ML算法(LABROC5),后者在处理大数据集时所需的计算量要少得多。模拟研究表明,这两种算法都能可靠地估计双正态ROC曲线参数a和b、ROC面积指数Az以及这些估计值的标准误差。