Suppr超能文献

在外科肿瘤学研究中回归分析方法——最佳实践指南。

Methods in regression analysis in surgical oncology research-best practice guidelines.

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

出版信息

J Surg Oncol. 2024 Jan;129(1):183-193. doi: 10.1002/jso.27533. Epub 2023 Nov 22.

Abstract

BACKGROUND

Using real working examples, we provide strategies and address challenges in linear and logistic regression to demonstrate best practice guidelines and pitfalls of regression modeling in surgical oncology research.

METHODS

To demonstrate our best practices, we reviewed patients who underwent tissue expander breast reconstruction between 2019 and 2021. We assessed predictive factors that affect BREAST-Q Physical Well-Being of the Chest (PWB-C) scores at 2 weeks with linear regression modeling and overall complications and malrotation with logistic regression modeling. Model fit and performance were assessed.

RESULTS

The 1986 patients were included in the analysis. In linear regression, age [β = 0.18 (95% CI: 0.09, 0.28); p < 0.001], single marital status [β = 2.6 (0.31, 5.0); p = 0.026], and prepectoral pocket dissection [β = 4.6 (2.7, 6.5); p < 0.001] were significantly associated with PWB-C at 2 weeks. For logistic regression, BMI [OR = 1.06 (95% CI: 1.04, 1.08); p < 0.001], age [OR = 1.02 (1.01, 1.03); p = 0.002], bilateral reconstruction [OR = 1.39 (1.09, 1.79); p = 0.009], and prepectoral dissection [OR = 1.53 (1.21, 1.94); p < 0.001] were associated with increased likelihood of a complication.

CONCLUSION

We provide focused directives for successful application of regression techniques in surgical oncology research. We encourage researchers to select variables with clinical judgment, confirm appropriate model fitting, and consider clinical plausibility for interpretation when utilizing regression models in their research.

摘要

背景

通过实际工作示例,我们提供线性和逻辑回归中的策略,并探讨挑战,以展示在外科肿瘤学研究中回归建模的最佳实践指南和陷阱。

方法

为了展示我们的最佳实践,我们回顾了 2019 年至 2021 年间接受组织扩张器乳房重建的患者。我们评估了影响 2 周时 BREAST-Q 胸部生理健康评分(PWB-C)的预测因素,采用线性回归模型评估,采用逻辑回归模型评估总体并发症和旋转不良。评估了模型拟合度和性能。

结果

共纳入 1986 例患者进行分析。在线性回归中,年龄 [β=0.18(95%CI:0.09,0.28);p<0.001]、单身婚姻状况 [β=2.6(0.31,5.0);p=0.026] 和胸肌下口袋解剖 [β=4.6(2.7,6.5);p<0.001] 与 2 周时的 PWB-C 显著相关。对于逻辑回归,BMI [OR=1.06(95%CI:1.04,1.08);p<0.001]、年龄 [OR=1.02(1.01,1.03);p=0.002]、双侧重建 [OR=1.39(1.09,1.79);p=0.009] 和胸肌下解剖 [OR=1.53(1.21,1.94);p<0.001] 与并发症发生的可能性增加相关。

结论

我们为成功应用回归技术在外科肿瘤学研究中提供了重点指导。我们鼓励研究人员在研究中使用回归模型时,根据临床判断选择变量,确认适当的模型拟合,并考虑临床合理性进行解释。

相似文献

4

本文引用的文献

4
Improving the Science in Plastic Surgery.提升整形外科学术水平。
Plast Reconstr Surg. 2022 Jun 1;149(6):1224e-1233e. doi: 10.1097/PRS.0000000000009151. Epub 2022 Apr 18.
8
Implant Loss and Associated Risk Factors following Implant-based Breast Reconstructions.基于植入物的乳房重建术后的植入物丢失及相关危险因素
Plast Reconstr Surg Glob Open. 2021 Jul 22;9(7):e3708. doi: 10.1097/GOX.0000000000003708. eCollection 2021 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验