Suppr超能文献

就像“浓缩咖啡”而不像“卡布奇诺”:景观指标可用于预测农场层面的咖啡产量,但不能预测市县级别的咖啡产量。

Like an "espresso" but not like a "cappuccino": landscape metrics are useful for predicting coffee production at the farm level but not at the municipality level.

机构信息

Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, PR, CEP: 81531-980, Brazil.

Departamento de Botânica, Universidade Federal do Paraná, Curitiba, PR, CEP: 81531-980, Brazil.

出版信息

Environ Monit Assess. 2023 Nov 22;195(12):1515. doi: 10.1007/s10661-023-12139-z.

Abstract

Coffee farms receive ecosystem services that rely on pollinators and pest predators. Landscape-scale processes regulate the flow of these biodiversity-based services. Consequently, the coffee farms' surrounding landscape impacts coffee production. This paper investigates how landscape structure can influence coffee production at different scales. We also evaluated the predictive utility of landscape metrics in a spatial (farm level) and aspatial approach (municipality level). We tested the effect of landscape structure on coffee production for 25 farms and 30 municipalities in southern Brazil. We used seven landscape metrics at landscape and class levels to measure the effect of landscape structure. At the farm level, we calculated metrics in five buffers from 1 to 5 km from the farm centroid to measure their scale of effect. We conducted a model selection using the generalized linear model (GLM) with a Gamma error distribution and inverse link function to evaluate the impact of landscape metrics on coffee production in both spatial and aspatial approaches. The landscape intensity index had a negative effect on coffee production (AICc = 375.59, p < 0.001). The native forest patch density (AICc = 390.14, p = 0.011) and landscape diversity (AICc = 391.18, p = 0.023) had a positive effect on production. All significant factors had effects at the farm level in the 2 km buffer but no effects at the municipality level. Our findings suggest that the landscape composition in the immediate surroundings of coffee farms helps predict production in a spatially explicit approach. However, these metrics cannot detect the impact of the landscape when analyzed in an aspatial approach. These findings highlight the importance of the landscape spatial structure, mainly the natural one, in the stability of coffee production. This study enhanced the knowledge of coffee production dependence on landscape-level processes. This advance can help to improve the sustainability of land use and better planning of agriculture, ensuring food and economic safety. Furthermore, our framework provides a method that can be useful to scrutinize any cropping system with census data that is either spatialized or not.

摘要

咖啡种植园获得的生态系统服务依赖于传粉者和害虫捕食者。景观尺度上的过程调节着这些基于生物多样性的服务的流动。因此,咖啡种植园的周围景观会影响咖啡的产量。本文研究了景观结构如何在不同尺度上影响咖啡的产量。我们还评估了景观指标在空间(农场层面)和非空间(市层面)方法中的预测效用。我们在巴西南部测试了景观结构对 25 个农场和 30 个市的咖啡产量的影响。我们使用了七个景观指标来衡量景观结构的影响,这些指标包括景观和类别的水平。在农场层面,我们在从农场质心到 1 到 5 公里的五个缓冲区中计算指标,以衡量其影响的尺度。我们使用广义线性模型(GLM)和伽马误差分布和逆链接函数进行模型选择,以评估景观指标在空间和非空间方法中对咖啡产量的影响。景观强度指数对咖啡产量有负面影响(AICc=375.59,p<0.001)。原生森林斑块密度(AICc=390.14,p=0.011)和景观多样性(AICc=391.18,p=0.023)对生产有积极影响。所有显著因素在 2 公里缓冲区的农场层面都有影响,但在市层面没有影响。我们的研究结果表明,咖啡种植园周围的景观组成有助于在空间显式方法中预测产量。然而,在非空间方法中分析时,这些指标无法检测到景观的影响。这些发现强调了景观空间结构的重要性,特别是自然景观结构,对咖啡产量的稳定性的重要性。本研究增强了对咖啡生产对景观水平过程的依赖的认识。这一进展有助于提高土地利用的可持续性和更好地规划农业,确保粮食和经济安全。此外,我们的框架提供了一种方法,可以利用具有空间化或非空间化普查数据的任何作物系统进行详细审查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验