Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
Department of Anaesthesia, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
Sci Rep. 2023 Nov 22;13(1):20427. doi: 10.1038/s41598-023-47449-2.
Despite efforts to diagnose diabetic nephropathy (DN) using biochemical data or ultrasound imaging separately, a significant gap exists regarding the development of integrated models combining both modalities for enhanced early DN diagnosis. Therefore, we aimed to assess the ability of machine learning models containing two-dimensional ultrasound imaging and biochemical data to diagnose early DN in patients with type 2 diabetes mellitus (T2DM). This retrospective study included 219 patients, divided into a training or test group at an 8:2 ratio. Features were selected using minimum redundancy maximum relevance and random forest-recursive feature elimination. The predictive performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC) for sensitivity, specificity, Matthews Correlation Coefficient, F1 score, and accuracy. K-nearest neighbor, support vector machine, and logistic regression models could diagnose early DN, with AUC values of 0.94, 0.85, and 0.85 in the training cohort and 0.91, 0.84, and 0.84 in the test cohort, respectively. Early DN diagnosing using two-dimensional ultrasound-based radiomics models can potentially revolutionize T2DM patient care by enabling proactive interventions, ultimately improving patient outcomes. Our integrated approach showcases the power of artificial intelligence in medical imaging, enhancing early disease detection strategies with far-reaching applications across medical disciplines.
尽管人们努力分别使用生化数据或超声成像来诊断糖尿病肾病 (DN),但在结合这两种方式开发用于增强早期 DN 诊断的综合模型方面仍存在很大差距。因此,我们旨在评估包含二维超声成像和生化数据的机器学习模型诊断 2 型糖尿病患者早期 DN 的能力。这项回顾性研究纳入了 219 名患者,按照 8:2 的比例分为训练组或测试组。使用最小冗余最大相关性和随机森林递归特征消除法选择特征。使用接受者操作特征曲线 (ROC) 的曲线下面积 (AUC) 评估模型的预测性能,用于评估敏感性、特异性、马修斯相关系数、F1 评分和准确性。K-最近邻、支持向量机和逻辑回归模型可以诊断早期 DN,在训练队列中的 AUC 值分别为 0.94、0.85 和 0.85,在测试队列中的 AUC 值分别为 0.91、0.84 和 0.84。使用基于二维超声的放射组学模型诊断早期 DN 有可能通过实现主动干预来彻底改变 2 型糖尿病患者的护理,从而最终改善患者的预后。我们的综合方法展示了人工智能在医学成像中的强大功能,通过在医学领域中的广泛应用,增强了早期疾病检测策略。