Suppr超能文献

通过深度符号网络发现数学表达式:基于分类的符号回归框架。

Discovering Mathematical Expressions Through DeepSymNet: A Classification-Based Symbolic Regression Framework.

作者信息

Wu Min, Li Weijun, Yu Lina, Sun Linjun, Liu Jingyi, Li Wenqiang

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):1356-1370. doi: 10.1109/TNNLS.2023.3332400. Epub 2025 Jan 7.

Abstract

Symbolic regression (SR) is the process of finding an unknown mathematical expression given the input and output and has important applications in interpretable machine learning and knowledge discovery. The major difficulty of SR is that finding the expression structure is an NP-hard problem, which makes the entire process time-consuming. In this study, the solution of expression structures was regarded as a classification problem and solved by supervised learning such that SR can be solved quickly by using the solving experience. Techniques for classification tasks, such as equivalent label merging and sample balance, were used to enhance the robustness of the algorithm. We proposed a symbolic network called DeepSymNet to represent symbolic expressions to improve the performance of the algorithm. DeepSymNet has been proven to have a strong representation ability with a shorter label compared to the current popular representation methods, reducing the search space when predicting. Moreover, DeepSymNet conveniently decomposes SR into two smaller subproblems, which makes solving the problem easier. The proposed algorithm was tested on artificially generated expressions and public datasets and compared with other algorithms. The results demonstrate the effectiveness of the proposed algorithm.

摘要

符号回归(SR)是在给定输入和输出的情况下寻找未知数学表达式的过程,在可解释机器学习和知识发现中具有重要应用。SR的主要困难在于寻找表达式结构是一个NP难问题,这使得整个过程耗时。在本研究中,将表达式结构的求解视为分类问题并通过监督学习解决,以便利用求解经验快速解决SR。使用了诸如等效标签合并和样本平衡等分类任务技术来增强算法的鲁棒性。我们提出了一个名为DeepSymNet的符号网络来表示符号表达式,以提高算法性能。与当前流行的表示方法相比,DeepSymNet已被证明具有更强的表示能力且标签更短,在预测时减少了搜索空间。此外,DeepSymNet方便地将SR分解为两个较小的子问题,这使得问题更容易解决。所提出的算法在人工生成的表达式和公共数据集上进行了测试,并与其他算法进行了比较。结果证明了所提出算法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验