Halevy I, Fike D A, Pasquier V, Bryant R N, Wenk C B, Turchyn A V, Johnston D T, Claypool G E
Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130-4899, USA.
Science. 2023 Nov 24;382(6673):946-951. doi: 10.1126/science.adh1215. Epub 2023 Nov 23.
Reconstructions of coupled carbon, oxygen, and sulfur cycles rely heavily on sedimentary pyrite sulfur isotope compositions (δS). With a model of sediment diagenesis, paired with global datasets of sedimentary parameters, we show that the wide range of δS (~100 per mil) in modern marine sediments arises from geographic patterns in the relative rates of diffusion, burial, and microbial reduction of sulfate. By contrast, the microbial sulfur isotope fractionation remains large and relatively uniform. Over Earth history, the effect of increasing seawater sulfate and oxygen concentrations on sulfate and sulfide transport and reaction may explain the corresponding increase observed in the δS offset between sulfate and pyrite. More subtle variations may be related to changes in depositional environments associated with sea level fluctuations and supercontinent cycles.
耦合的碳、氧和硫循环的重建在很大程度上依赖于沉积黄铁矿硫同位素组成(δS)。通过一个沉积物成岩模型,结合沉积参数的全球数据集,我们表明现代海洋沉积物中δS的广泛范围(约100‰)源于硫酸盐扩散、埋藏和微生物还原相对速率的地理模式。相比之下,微生物硫同位素分馏仍然很大且相对均匀。在地球历史上,海水硫酸盐和氧气浓度增加对硫酸盐和硫化物传输及反应的影响,可能解释了在硫酸盐和黄铁矿之间观察到的δS偏移的相应增加。更细微的变化可能与海平面波动和超大陆旋回相关的沉积环境变化有关。