Suppr超能文献

优化可穿戴设备和测试参数,以监测现场环境中跑步步长的长程相关性,用于疲劳管理。

Optimizing Wearable Device and Testing Parameters to Monitor Running-Stride Long-Range Correlations for Fatigue Management in Field Settings.

机构信息

Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.

Biomechanics, Physical Performance, and Exercise Research Group, Macquarie University, Sydney, NSW, Australia.

出版信息

Int J Sports Physiol Perform. 2023 Nov 23;19(2):207-211. doi: 10.1123/ijspp.2023-0186. Print 2024 Feb 1.

Abstract

PURPOSE

There are important methodological considerations for translating wearable-based gait-monitoring data to field settings. This study investigated different devices' sampling rates, signal lengths, and testing frequencies for athlete monitoring using dynamical systems variables.

METHODS

Secondary analysis of previous wearables data (N = 10 runners) from a 5-week intensive training intervention investigated impacts of sampling rate (100-2000 Hz) and signal length (100-300 strides) on detection of gait changes caused by intensive training. Primary analysis of data from 13 separate runners during 1 week of field-based testing determined day-to-day stability of outcomes using single-session data and mean data from 2 sessions. Stride-interval long-range correlation coefficient α from detrended fluctuation analysis was the gait outcome variable.

RESULTS

Stride-interval α reduced at 100- and 200- versus 300- to 2000-Hz sampling rates (mean difference: -.02 to -.08; P ≤ .045) and at 100- compared to 200- to 300-stride signal lengths (mean difference: -.05 to -.07; P < .010). Effects of intensive training were detected at 100, 200, and 400 to 2000 Hz (P ≤ .043) but not 300 Hz (P = .069). Within-athlete α variability was lower using 2-session mean versus single-session data (smallest detectable change: .13 and .22, respectively).

CONCLUSIONS

Detecting altered gait following intensive training was possible using 200 to 300 strides and a 100-Hz sampling rate, although 100 and 200 Hz underestimated α compared to higher rates. Using 2-session mean data lowers smallest detectable change values by nearly half compared to single-session data. Coaches, runners, and researchers can use these findings to integrate wearable-device gait monitoring into practice using dynamic systems variables.

摘要

目的

将基于可穿戴设备的步态监测数据转换到现场环境中,需要考虑重要的方法学因素。本研究使用动力系统变量,调查了不同设备的采样率、信号长度和测试频率在运动员监测中的应用。

方法

对一项为期 5 周强化训练干预的先前可穿戴设备数据(N=10 名跑步者)进行二次分析,研究了采样率(100-2000 Hz)和信号长度(100-300 步)对因强化训练引起的步态变化的检测影响。对 13 名跑步者在 1 周现场测试中的数据进行初步分析,使用单次测试数据和 2 次测试的平均值确定结果的日常稳定性。来自去趋势波动分析的步长间隔长程相关系数α是步态结果变量。

结果

与 300-2000 Hz 采样率(平均差异:-0.02 至-0.08;P ≤ 0.045)和 100 步与 200-300 步信号长度(平均差异:-0.05 至-0.07;P < 0.010)相比,步长间隔α在 100 和 200 Hz 时降低。在 100、200 和 400-2000 Hz 时检测到强化训练的效果(P ≤ 0.043),但在 300 Hz 时未检测到(P = 0.069)。与单次测试数据相比,使用 2 次测试的平均值可降低运动员内的α变异性(最小可检测变化:分别为 0.13 和 0.22)。

结论

使用 200-300 步和 100 Hz 的采样率,即使 100 和 200 Hz 与较高的采样率相比低估了α,也可以检测到强化训练后的步态改变。与单次测试数据相比,使用 2 次测试的平均值可将最小可检测变化值降低近一半。教练、跑步者和研究人员可以使用这些发现,使用动力系统变量将可穿戴设备步态监测整合到实践中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验