Suppr超能文献

融合机器学习模型可预测不同临床背景下CAD-CAM陶瓷的颜色及相应的最小厚度。

Fusion machine learning model predicts CAD-CAM ceramic colors and the corresponding minimal thicknesses over various clinical backgrounds.

作者信息

Yang Jiawei, Hao Zezhou, Xu Jiani, Wang Jie, Jiang Xinquan

机构信息

Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.

出版信息

Dent Mater. 2024 Feb;40(2):285-296. doi: 10.1016/j.dental.2023.11.013. Epub 2023 Nov 23.

Abstract

OBJECTIVES

This study has developed and optimized a machine learning model to accurately predict the final colors of CAD-CAM ceramics and determine their required minimum thicknesses to cover different clinical backgrounds.

METHODS

A total of 120 ceramic specimens (2 mm, 1 mm and 0.5 mm thickness; n = 10) of four CAD-CAM ceramics - IPS e.max, IPS ZirCAD, Upcera Li CAD and Upcera TT CAD - were studied. The CIELab coordinates (L*, a* and b*) of each specimen were obtained over seven different clinical backgrounds (A1, A2, A3.5, ND2, ND7, cobalt-chromium alloy (CC) and medium precious alloy (MPA)) using a digital spectrophotometer. The color difference (ΔE) and lightness difference (ΔL) results were submitted to 39 different models. The prediction results from the top-performing models were used to develop a fusion model via the Stacking integrated learning method for best-fitting prediction. The SHapley Additive exPlanation (SHAP) was performed to interpret the feature importance.

RESULTS

The fusion model, which combined the ExtraTreesRegressor (ET) and XGBRegressor (XGB) models, demonstrated minimal prediction errors (R = 0.9) in the external testing sets. Among the investigated variables, thickness and background colors (CC and MPA) majorly influenced the final color of restoration. To achieve perfect aesthetic restoration (ΔE<2.6), at least 1.9 mm IPS ZirCAD or 1.6 mm Upcera TT CAD were required to cover the CC background, while two tested glass-ceramics did not meet the requirements even with thicknesses over 2 mm.

SIGNIFICANCE

The fusion model provided a promising tool for automate decision-making in material selection with minimal thickness over various clinical background.

摘要

目的

本研究开发并优化了一种机器学习模型,以准确预测计算机辅助设计与制造(CAD-CAM)陶瓷的最终颜色,并确定其覆盖不同临床背景所需的最小厚度。

方法

对四种CAD-CAM陶瓷——IPS e.max、IPS ZirCAD、Upcera Li CAD和Upcera TT CAD——的总共120个陶瓷样本(厚度分别为2毫米、1毫米和0.5毫米;n = 10)进行了研究。使用数字分光光度计在七种不同的临床背景(A1、A2、A3.5、ND2、ND7、钴铬合金(CC)和中熔合金(MPA))下获取每个样本的CIELab坐标(L*、a和b)。将色差(ΔE)和明度差(ΔL)结果提交给39种不同的模型。表现最佳的模型的预测结果通过堆叠集成学习方法用于开发融合模型,以进行最佳拟合预测。进行SHapley加法解释(SHAP)以解释特征重要性。

结果

结合ExtraTreesRegressor(ET)和XGBRegressor(XGB)模型的融合模型在外部测试集中显示出最小的预测误差(R = 0.9)。在所研究的变量中,厚度和背景颜色(CC和MPA)对修复体的最终颜色有主要影响。为实现完美的美学修复(ΔE<2.6),覆盖CC背景至少需要1.9毫米的IPS ZirCAD或1.6毫米的Upcera TT CAD,而两种测试的玻璃陶瓷即使厚度超过2毫米也不符合要求。

意义

该融合模型为在各种临床背景下以最小厚度进行材料选择的自动化决策提供了一个有前景的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验