Suppr超能文献

使用物理信息深度学习预测肿瘤内流体压力和脂质体积累。

Predicting intratumoral fluid pressure and liposome accumulation using physics informed deep learning.

机构信息

Department of Applied Mathematics, University of Waterloo, Waterloo, Canada.

MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Sci Rep. 2023 Nov 23;13(1):20548. doi: 10.1038/s41598-023-47988-8.

Abstract

Liposome-based anticancer agents take advantage of the increased vascular permeability and transvascular pressure gradients for selective accumulation in tumors, a phenomenon known as the enhanced permeability and retention(EPR) effect. The EPR effect has motivated the clinical use of nano-therapeutics, with mixed results on treatment outcome. High interstitial fluid pressure (IFP) has been shown to limit liposome drug delivery to central tumour regions. Furthermore, high IFP is an independent prognostic biomarker for treatment efficacy in radiation therapy and chemotherapy for some solid cancers. Therefore, accurately measuring spatial liposome accumulation and IFP distribution within a solid tumour is crucial for optimal treatment planning. In this paper, we develop a model capable of predicting voxel-by-voxel intratumoral liposome accumulation and IFP using pre and post administration imaging. Our approach is based on physics informed machine learning, a novel technique combining machine learning and partial differential equations. through application to a set of mouse data and a set of synthetically-generated tumours, we show that our approach accurately predicts the spatial liposome accumulation and IFP for an individual tumour while relying on minimal information. This is an important result with applications for forecasting tumour progression and designing treatment.

摘要

基于脂质体的抗癌药物利用增加的血管通透性和跨血管压力梯度来选择性地在肿瘤中积累,这一现象被称为增强的通透性和保留(EPR)效应。EPR 效应促使纳米治疗剂在临床上得到应用,但在治疗效果上的结果喜忧参半。已经表明,高间质液压力(IFP)会限制脂质体药物向肿瘤中央区域的输送。此外,高 IFP 是某些实体瘤放射治疗和化疗治疗效果的独立预后生物标志物。因此,准确测量实体瘤内脂质体的空间积累和 IFP 分布对于最佳治疗计划至关重要。在本文中,我们开发了一种能够使用给药前后成像预测肿瘤内体素的脂质体积累和 IFP 的模型。我们的方法基于物理信息机器学习,这是一种将机器学习和偏微分方程相结合的新技术。通过对一组小鼠数据和一组合成肿瘤的应用,我们表明我们的方法可以在依赖最少信息的情况下,准确预测单个肿瘤的空间脂质体积累和 IFP。这是一个重要的结果,可用于预测肿瘤进展和设计治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a81/10667280/e82c9c3207e3/41598_2023_47988_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验