School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
Sci Data. 2023 Nov 23;10(1):821. doi: 10.1038/s41597-023-02711-0.
Mathematical models to predict skin permeation tend to be based on animal derived experimental data as well as knowing physicochemical properties of the compound under investigation, such as molecular volume, polarity and lipophilicity. This paper presents a strikingly contrasting model to predict permeability, formed entirely from simple chemical fragment (functional group) data and a recently released, freely accessible human (i.e. non-animal) skin permeation database, known as the 'Human Skin Database - HuskinDB'. Data from within the database allowed development of several fragment-based models, each including a calculable effect for all of the most commonly encountered functional groups present in compounds within the database. The developed models can be applied to predict human skin permeability (logK) for any compound containing one or more of the functional groups analysed from the dataset with no need to know any other physicochemical properties, solely the type and number of each functional group within the chemical structure itself. This approach simplifies mathematical prediction of permeability for compounds with similar properties to those used in this study.
数学模型旨在预测皮肤渗透,这些模型往往基于动物实验数据以及化合物的物理化学特性,如分子体积、极性和脂溶性。本文提出了一种截然不同的模型来预测渗透性,该模型完全基于简单的化学片段(官能团)数据和最近发布的、可自由获取的人类(即非动物)皮肤渗透数据库,称为“人类皮肤数据库 - HuskinDB”。数据库中的数据允许开发几个基于片段的模型,每个模型都包含一个可计算的效应,适用于数据库中所有常见官能团的化合物。开发的模型可用于预测任何包含一个或多个数据集分析的官能团的化合物的人体皮肤渗透性(logK),而无需了解任何其他物理化学性质,仅需知道化学结构本身中每个官能团的类型和数量。这种方法简化了对与本研究中使用的化合物具有相似性质的化合物的渗透性的数学预测。